Supplemental Data Summary

Technical Memorandum DS No. 15

Reynolds Metals Company Troutdale Facility MARCH 26, 1996

Prepared by

Contents

Sec	ction	Page
1 I	ntroduction	1
2 S	Site Background and Setting	2
3 F	3.1 Initial Bathymetric Survey and Sediment Probing	5 6 6 6
4 R	4.1 Bathymetry and Topography	
5 S	ummary of Findings	43
6 R	References	45
Att	achments	
A B C D	Sediment Coring and Boring Logs Cross Sections Laboratory Physical Test Results Laboratory Analytical Data Summaries	

Contents (continued)

Tabl	es .	
3-1	Summary of Soil and Sediment Samples Selected for Chemical Analysis	11
3-2	Summary of Soil and Sediment Analytical Methods	
3-3	Summary of Sediment Samples Selected for Physical Analysis	13
3-4	Summary of Physical Test Parameters and Methods	14
4-1	Summary of Laboratory Physical Analytical Results	
4-2	Summary of Process Residue Data for Company Lake	23
4-3	Summary of Company Lake Native Sediment Data and Columbia River Background Metals Data	24
4-4	Comparison of 1996 Process Residue and Native Sediment for Company Lake	26
4-5	Process Residue Analytical Results for 1994	31
4-6	Comparison Between 1996 and 1994 Process Residues	32
4-7	Comparison of Company Lake Shoreline Brick Soil Samples with Other Brick Samples, Company Lake Sediments, and Background Values	
4-8	Analytical Results of Flue Brick Collected as Part of RMC's AWARE Program	
4-9	Soil Sample from Depression East of Outfall Ditch	
4-10	Analytical Results for Soil Samples at West Company Lake	
4-11	COE HEC-2 Water Surface Elevations by Flood Recurrence Interval	
4-12	•	
Figu	res	
2-1	Company Lake Location Map	3
3-1	Company Lake Sample Location Map	7
4-1	Company Lake Bathymetric/Topography Map	15
4-2	Company Lake Surface Features	16
4-3	Aquatic Vegetation Map	17
4-4	Process Residue Thickness Contour Map	
4- 5	Fluoride (Method 340.1/.2) in Company Lake Sediment	
4-6	Fluoride (Method 300.0) in Company Lake Sediment	28
4-7	Removal Site Assessment Sediment and Soil Sample Locations	29

Company Lake Supplemental Data Summary

PREPARED FOR:

Steve Shaw/RMC

Mike Leach/RMC

Doug Macauley/RMC

PREPARED BY:

Rick Johns/CH2M HILL/PDX

Dawn Sanders/CH2M HILL/PDX

COPIES:

Scott Dethloff/CH2M HILL/PDX Davi Richards/CH2M HILL/CVO Phil Brown/CH2M HILL/PDX Dave Dailer/CH2M HILL/PDX

DATE:

March 26, 1997

1 Introduction

This technical memorandum summarizes information collected from August through November 1996 during implementation of the *Company Lake Supplemental Data-Gathering Work Plan* (CH2M HILL, August 14, 1996) for the Reynolds Metals Company (RMC) facility in Troutdale, Oregon. The following information is presented in this data summary:

- Bathymetry of Company Lake
- Topography of the area surrounding Company Lake
- Aquatic plant species and distributions
- Logs of cores and borings from Company Lake and West Company Lake
- Physical and chemical analyses of Company Lake sediment
- Chemical analysis of soil from within the brick on the south shore of Company Lake
- Chemical analysis of West Company Lake soil
- Chemical analysis of soil collected in the depression east of the outfall ditch
- Dike construction historical review
- Potential flood impact evaluation

This data summary will be used to update the conceptual model for Company Lake as presented in the *Draft Current Situation Summary* (CSS) (CH2M HILL, April 5, 1996). The updated conceptual model will provide a basis for development of the *Wastewater Discharge Areas Addendum to the RI/FS Work Plan* (CH2M HILL, March 26, 1997). This addendum is scheduled for completion in spring 1997.

An evaluation of groundwater was not included in this field effort, nor is it provided in this report. Sitewide groundwater conditions are being addressed as part of the RMC groundwater program. Additionally, the groundwater conceptual model for Company Lake will be reviewed and the data needs are addressed in the *Wastewater Discharge Areas Addendum to the RI/FS Work Plan* (CH2M HILL, March 26, 1997).

2 Site Background and Setting

The Company Lake area includes Company Lake, West Company Lake, and a depression east of the outfall ditch (see Figure 2-1). Descriptions of the area and the area history are provided below.

2.1 Area Description

Company Lake is a wastewater treatment pond located north of the U.S. Army Corps of Engineers (COE) dike and is oriented east to west. The surface area of the lake is approximately 600,000 square feet [14 acres at a normal surface water elevation of about 15.5 feet National Geodetic Vertical Datum (NGVD)], not including the outfall ditch. The COE dike forms the south bank of Company Lake; the north face of the COE dike has been partially lined with refractory brick. The pond is bordered on the north by native and nonnative vegetation, including stands of hardwoods and Himalayan blackberries. The outfall road forms the eastern boundary of the pond. Gresham Sand and Gravel (GS&G) property forms the western boundary of the pond.

RMC wastewater and stormwater from the South Ditch enter the pond through a pipe at the southwest end. The pipe is oriented to discharge toward the east.

An outfall ditch connects the northwest end of the treatment pond with the Columbia River. Discharge flows north via the ditch through a Parshall flume to an overflow pipe and into the river. This discharge is monitored in accordance with RMC's National Pollutant Discharge Elimination System (NPDES) discharge permit. RMC personnel routinely measure the flow rate and collect water samples at the flume. During periods of high water in the Columbia River, water flows from the river into Company Lake via the outfall ditch.

West Company Lake was once part of Company Lake but was filled and is now owned by GS&G. Dredged materials from the river are stockpiled over West Company Lake as part of the GS&G operations. Borings through West Company Lake indicate that the existing fill material is 8 to 24 feet deep.

A depression on the eastern side of the outfall ditch, about midway between Company Lake and the Columbia River, has been observed to collect surface water when river levels are high. The depression appears to be part of a former small channel that extended to the Sandy River. The depression is now isolated from surface runoff to the east by a road and to the west by the outfall ditch berm, and is approximately 700 feet long by 80 feet wide. The berm separating the outfall ditch from the depression is at an elevation of approximately 18 feet NGVD. Wastewater may enter the depression area when the Columbia River floods into the outfall ditch and causes the water elevation to rise above the level of the berm. During extreme high-water events, water may also enter the depression area from the east via the former channel. Surface water is also likely to collect in the depression as the result of stormwater runoff.

2.2 Site History

A history of Company Lake has been developed from aerial photographs and anecdotal information provided by plant personnel. The following is a chronological history:

- 1940: Aerial photographs indicate that in 1940, just before the plant was built, Company
 Lake and what is now called East Lake (a small depression east of the access road) were
 connected in series as part of a natural high-water bypass channel between the Sandy
 and Columbia Rivers.
- 1941: Plant construction was completed. At this time the plant was owned by the U.S. Government.
- 1946: RMC began leasing the plant from the government.
- 1947: RMC began discharging overflow wastewater and stormwater effluent into Company Lake. At that time, the stormwater and wastewater were discharged into the south wetlands and the overflow was diverted into Company Lake. It is believed that the discharge entered Company Lake through a pipe at the south shore in the central area of the pond. This flow continued until 1965.
- 1949: RMC purchased the facility.
- 1957: The outfall access road was improved and thus the connection between Company Lake and East Lake was severed.
- 1965: The discharge from Company Lake to the Columbia River was permitted under the NPDES system. At that time stormwater and wastewater were diverted to the South Ditch (instead of the south wetlands), and then into Company Lake.
- 1969: Because Potline 5 was constructed at the plant, the outfall pipe had to be moved from the central south shore to the southwest corner of the pond (its present location).
- 1970: The present outfall ditch was excavated from the northwest corner of Company Lake to the Columbia River. Before use of this ditch, overflow of the pond occurred through an outfall channel near Sundial Marine (Figure 2-1). The aerial photographic record suggests that after construction of the new outfall ditch, the lake receded, and by 1975, it acquired a shape and extent nearly identical to its current shape and extent.
- 1970 to 1990: The invert elevation of the outfall ditch was raised from about 11 feet in 1970 to the current elevation of about 15 feet. RMC raised the invert elevation to allow installation of flow measurement devices and to reduce the frequency of Columbia River inflow into the treatment pond.
- 1970 to 1975: GS&G filled approximately 1,000 feet of the western end of the pond with dredged sand and gravel from the mouth of the Sandy River. GS&G continues to dredge materials from the river and stockpile them over what is now called West Company Lake. The size of the stockpile varies, but it currently covers about 11 acres of the original surface water area.
- 1991: Major plant operations were stopped for economic reasons. The plant began limited operations, which are ongoing.

4

The constituents accumulated in the Company Lake sediment are primarily a result of the discharge of facility wastewater and stormwater and are consistent with the use of this area as part of the permitted treatment system. RMC believes that the majority of the process residue in the sediment resulted from bleed streams from the carbon plant (bakehouse) air emission control system discharged to the pond between 1975 and 1989.

3 Field Investigation Program

A field investigation program, consisting of bathymetric and topographical mapping and collection of soil and sediment samples from Company Lake, West Company Lake, and the depression, was performed from August through November 1996. This section details methodologies used in this field effort. Results of the field investigation program and results of the laboratory analyses are presented in Section 4, Results.

3.1 Initial Bathymetric Survey and Sediment Probing

An initial investigation of pond bottom depth and sediment composition was performed on August 20 and 21, 1996, by CH2M HILL personnel. Originally, it was thought that the process residue layer consisted of very loose, unconsolidated materials overlying a more consolidated layer in the pond bottom. The initial investigation was performed to identify and quantify the unconsolidated process residue layer thickness and the total process residue layer thickness, and to obtain preliminary bathymetric pond bottom data.

A series of measurements was performed at 63 locations on the pond. At each of the locations, the following measurements were taken:

- A sludge blanket indicator (a photoelectric cell with an attached light source) was
 lowered until the instrument measured a sharp decrease in light transmission, an
 indication of a solid layer. This depth was recorded, and an elevation was calculated on
 the basis of the surface water elevation. This elevation was considered to be the top of
 the unconsolidated process residue layer.
- A 6-inch-square steel bottom plate was attached to a pole that had a survey prism on its
 top. The plate was lowered to the bottom until it encountered resistance, and the
 location and elevation were surveyed with a theodolite and electronic distance meter
 (EDM). This elevation was considered to be the top of the consolidated process residue
 layer (bottom of the unconsolidated layer).
- A length of ½-inch steel rebar was lowered to the top of the process residue layer. The rebar was marked at the water level with surveyor's flagging. The rebar was then pushed into the bottom by hand until refusal. The rebar was again marked with surveyor's flagging at the water level. The rebar was pulled out and the distance between the two measured levels was recorded; this distance was used to approximate the thickness of the process residue layer.

The initial probing revealed the following:

An unconsolidated process residue layer did not appear to be present; the depths
measured by the sludge indicator blanket and the steel plate were nearly identical
(within measurement error). Subsequent visual observations during core collection

5

confirmed that there was no unconsolidated layer and that the process residue layer had a similar vertical consistency.

- The total process residue layer thickness ranged from nonexistent to more than 4 feet.
- The water depth varied from about 3 feet to more than 15 feet deep, with the greatest depth recorded at the east end of the lake.

These data were used to identify and refine methodologies for final bathymetric surveying and sediment coring.

3.2 Final Bathymetric Survey and Topographic Mapping

A final bathymetric survey of the treatment pond was performed by CH2M HILL surveyors from August 27 through 30, 1996. Measurements were made with a 6-inch by 6-inch steel plate mounted on the bottom of a survey rod, with a prism mounted on top for the EDM. Locations and elevations were surveyed to determine the bathymetric profile of the pond bottom.

Topographic mapping around the shoreline of the pond was performed from August 27 through 30, 1996, by CH2M HILL surveyors using a total station theodolite and EDM. Measurements were made approximately 100 feet beyond the banks of the pond.

3.3 Vegetation Survey

An aquatic plant survey of Company Lake was conducted in conjunction with efforts to map depths of water and unconsolidated sediments, on August 20 and 21, 1996. Plants were identified at 63 locations along north-south transects of the pond. Plants were collected for identification either manually (in shallow water) or with a dredge or hook (in deeper water).

3.4 Methods of Collecting Soil and Sediment Samples

Soil and sediment samples were collected within and in the immediate vicinity of Company Lake from October 15 to October 21, 1996, and from West Company Lake on November 26 and 27, 1996. The sample locations are shown in Figure 3-1.

All sampling activities were conducted in accordance with the *Draft Sampling and Analysis Plan* (SAP) and the *Draft Activity-Specific Safety and Health Plan*, both prepared by CH2M HILL and submitted to the U.S. Environmental Protection Agency (EPA) on May 8, 1996. Information on the field survey of sample locations, the sample collection methodology, equipment decontamination, sample locations and analyses, and field quality assurance and quality control (QA/QC) samples is presented in the paragraphs that follow.

3.4.1 Field Survey of Sample Locations

Company Lake sample locations were chosen after north-south transects were run at a spacing of approximately 150 feet, with one to four sample locations along each transect.

Field locations for all pond samples were established by temporary anchoring of buoys labeled with the station number. Field locations in the outlet and shore samples were established with a labeled wooden lath. After sampling was completed, all sample locations were surveyed by CH2M HILL surveyors using a total station theodolite and EDM. The depth to the pond bottom at each sample location was also determined at the time of surveying by the method described in Section 3.2, Final Bathymetric Survey and Topographic Mapping.

3.4.2 Sample Collection Methodology

Sediment samples were collected in Company Lake and the outfall ditch by a variety of methods, including an AMS soft sediment sampler and a barge-mounted sediment core sampler. The soil sample from within the brick was collected with a shovel. Subsurface soil samples in West Company Lake were collected by conventional drilling and use of a split-spoon sampler. Sampling equipment was decontaminated in accordance with methods described in Section 3.4.3, Decontamination of Sampling Equipment. Each sample collection method is described below in greater detail.

Shovel. One soil sample was collected with a standard shovel at Station CL-SD004 on the south shore of the pond, within the brick. The shovel was used to advance a hole to a depth of 1 foot and to obtain a soil sample. The sample was placed in a stainless steel bowl, mixed with a spoon to provide a homogeneous sample, and then transferred to clean sample containers for laboratory analysis. The samples collected for volatile organic compound (VOC) analyses were not mixed, but rather were placed directly into the VOC sample jar.

AMS Soft-Sediment Sampler. Surface sediment samples were collected at Stations CL-SD001 and CL-SD003 in the Company Lake outfall ditch, and one surface soil sample was collected at Station CL-SD002 in a depression east of the outfall ditch, by means of a two-piece AMS stainless steel, soft-sediment sampler. The square, shafted sampler was equipped with a one-way stainless steel flap valve, removable side, hammer guide, and hammer. The sampler was pushed into the ground manually until refusal, and then driven further with the hammer. After the sampler was retracted, the removable half of the sampler was displaced to retrieve the sediment. The sample was logged, placed in a stainless steel bowl, mixed with a spoon to provide a homogeneous sample, and then transferred to sterilized sample containers for laboratory analysis. The samples collected for VOC analyses were not mixed, but rather were placed directly into the VOC sample jars.

Barge-Mounted Sediment Core Sampler. Sediment samples from Stations CL-SD005 to CL-SD037 were collected by use of a barge-mounted sediment core sampler. The barge-mounted core sampler was operated by Advanced American Diving Service, Inc., of Oregon City, Oregon, under subcontract to CH2M HILL. The sampler was operated from a 30-footlong barge equipped with an A-frame structure and electric winch mounted on the bow for core retrieval. The sampler is a 5-foot-long, 2-inch-inside-diameter stainless steel casing with a closing valve inside the head assembly.

8

At each sample location, the stainless steel sampler was decontaminated and a 5-foot-long, 2-inch-diameter, clear plastic sample tube was placed inside. The sampler tip was placed on the sampler tube to prevent the tube from falling out and yet leave the penetrating end open. The sampler was then lowered to sediment depth by hand via pipe extensions, and driven by hand until refusal. Once refusal was encountered, the sampler was driven with a hydraulic jackhammer at low speeds to prevent disturbance of the sample. The sampler was driven to a maximum depth of 5 feet, then extracted with the winch and placed onto a sampling platform on the barge for onboard processing.

After the core was placed on the platform, the plastic sample tube was extracted and capped. Actual sample recovery was established with a tape measure; the lithology was logged; and the core was photographed. Typically, each core revealed a dark gray or black process residue layer overlying what appeared to be a native sediment layer. Each layer was extruded and placed into separate, decontaminated stainless steel mixing bowls, where they were classified in accordance with the Standard Practice for Description and Identification of Soils [Visual-Manual Procedure, American Society for Testing and Materials (ASTM) D2488] and logged for visual characteristics. Each layer was sampled and prepared for laboratory analysis. One 9-ounce jar was filled with a sample for VOC analyses before homogenization by use of a new stainless steel spoon. The remaining sample was homogenized, and three additional 9-ounce jars were filled for the remaining chemical analyses. When one sediment core did not provide enough sample from both layers to fill all the required sample containers, additional cores were taken adjacent to the original sample location by the same core sample recovery method.

Conventional Drilling. Soil samples from West Company Lake (Sample Locations CL-SD038, CL-SD039, and CL-SD040) were collected on November 26 and 27, 1996, by Geo-Tech Explorations, Inc., under subcontract to CH2M HILL. Samples were collected with 3-inch-inside-diameter stainless steel split spoons driven by standard SPT sampling methods. A drilling rig was used to advance hollow-stem augers to the desired sampling depth, and a decontaminated split spoon was driven 18 inches. The sampler was then withdrawn, split open, logged, placed in a stainless steel bowl, mixed with a spoon to provide a homogeneous sample, and transferred into sterilized sample containers for laboratory analysis. The samples collected for VOC analyses were not mixed, but rather were placed directly into the VOC sample jars.

3.4.3 Decontamination of Sampling Equipment

Decontamination of sampling equipment, including the shovel, petite ponar dredge, AMS soft sediment core sampler, barge-mounted sediment core sampler, plastic sample tubes, core catchers, split-spoon samplers, and mixing bowls, was performed before sample collection and between samplings at different locations to preclude cross-contamination in the samples. Spoons were discarded after each use. Decontamination of the sampling equipment consisted of the following procedure:

- Wash and scrub with tap water and Alconox solution
- Rinse with tap water
- Rinse with 10 percent nitric acid solution
- Rinse with deionized/distilled water
- Rinse with laboratory-grade isopropyl alcohol
- Rinse with deionized/distilled water

The drilling rig, augers, rods, and tools were decontaminated with a steam cleaner before sampling at each location.

All fluids used in decontamination of sampling equipment were collected in 55-gallon drums and disposed of at the RMC facility decontamination pad.

3.4.4 Sample Locations and Analyses .

A total of 37 locations (stations) were sampled in the Company Lake area; of those, 18 locations (31 total samples) were chosen for chemical analysis, and 15 locations (17 total samples) were chosen for physical analysis. The remaining samples were archived for potential analysis at a later date. Three locations (five total samples) were sampled in the West Company Lake area, and the samples were analyzed for chemical constituents. The types of sample analysis (chemical, physical, and archival) are indicated in Figure 3-1.

A summary of the samples selected for chemical analysis is presented in Table 3-1, and a summary of the physical (geotechnical) parameters is presented in Table 3-2.

All samples were logged in the field by CH2M HILL personnel. The sediment core logs are presented in Attachment A.

3.4.5 Field Quality Assurance and Quality Control Samples

Three types of QA/QC samples were obtained during field activities: duplicate samples, equipment blanks, and trip blanks. Two duplicate samples were collected from CL-SD028-0000 and CL-SD028-0030. Five equipment blanks and six trip blanks were collected. Duplicate samples and equipment blanks were analyzed for the same constituents as soil and sediment samples. Trip blanks were analyzed for VOCs only.

3.4.6 Data Quality Evaluation

The data were found to conform to analytical and QC specifications for more than 95 percent of the data points. Any deviations have been detailed in reports, and individual data points have been flagged per EPA functional guidelines. These flags are included in the data in this report. The noted minor deviations are not expected to have a significant effect on data usability. The tables in this report also incorporate sample data qualifications for laboratory method blanks per EPA functional guidelines.

3.5 Analytical Methods

Selected soil and sediment samples were analyzed for the chemical constituents and physical parameters described in Subsections 3.5.1 and 3.5.2.

3.5.1 Chemical Analysis

Soil and sediment samples shown in Table 3-1 were submitted for chemical analysis to the CH2M HILL Laboratory in Redding, California (Quality Analytical Laboratories, Inc.), and Oregon Analytical Laboratory in Beaverton, Oregon. The chemical constituents analyzed and methods used are shown in Table 3-2.

	Summ	nary of Soil and	Table 3-1 Sediment Samples Sele	cted for Chen	nical Analysis
Study Area	Station Number	Sample Designation	Sampling Method	Sample Depth (feet)	Comments
Company Lake	CL-SD001	CL-SD001-0000-0	AMS Soft Sediment Sampler	0 to 1.2	Outfall ditch, possible process residue
	CL-SD002	CL-SD002-0000-0	AMS Soft Sediment Sampler	0 to 1.5	Soil in depression east of outfall ditch
	CL-SD003	CL-SD003-0000-0	AMS Soft Sediment Sampler	0 to 1	Outfall ditch, process residue
	CL-SD004	CL-SD004-0000-0	Shovel	0 to 1	Brick pile soil
	CL-SD005	CL-SD005-0000-0	Sediment Coring	0 to 0.5	Process residue
	CL-SD005	CL-SD005-0010-0	Sediment Coring	1 to 2	
	CL-SD009	CL-\$D009-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD009	CL-SD009-0020-0	Sediment Coring	2 to 3	
	CL-SD011	CL-SD011-0000-0	Sediment Coring	0 to 1.5	Process residue
	CL-SD011	CL-SD011-0020-0	Sediment Coring	2 to 4	
	CL-SD013	CL-SD013-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD013	CL-SD013-0025-0	Sediment Coring	2.5 to 3.5	
	CL-SD016	CL-\$D016-0010-0	Sediment Coring	1 to 2	
	CL-SD018	CL-SD018-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD018	CL-SD018-0020-0	Sediment Coring	2 to 3	
	CL-SD019	CL-SD019-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD019	CL-SD019-0030-0	Sediment Coring	3 to 4	
	CL-SD020	CL-SD020-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD020	CL-SD020-0025-0	Sediment Coring	2.5 to 3.5	
	CL-SD022	CL-SD022-0000-0	Sediment Coring	0 to 1.5	Process residue
	CL-SD022	CL-SD022-0030-0	Sediment Coring	3 to 4	
	CL-SD024	CL-SD024-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD024	CL-SD024-0015-0	Sediment Coring	1.5 to 2.5	
	CL-SD028	CL-SD028-0000-0	Sediment Coring	0 to 1.5	Process residue
	CL-SD028	CL-SD028-0030-0	Sediment Coring	3 to 4	
	CL-SD032	CL-SD032-0000-0	Sediment Coring	0 to 1.5	Process residue
	CL-SD032	CL-SD032-0030-0	Sediment Coring	3 to 3.8	
	CL-SD034	CL-SD034-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD034	CL-SD034-0020-0	Sediment Coring	2 to 3	
	CL-SD037	CL-SD037-0000-0	Sediment Coring	0 to 1	Process residue
	CL-SD037	CL-SD037-0035-0	Sediment Coring	3.5 to 4.5	
West Company	CL-SD038	CL-SD038-0120-0	Split Spoon	. 12 to 13	Soil, possible process residue
Lake	CL-SD038	CL-SD038-0150-0	Split Spoon	15 to 16	
	CL-SD039	CL-SD039-0075-0	Split Spoon	7.5 to 9	Soil, possible process residue
	CL-SD039	CL-SD039-0120-0	Split Spoon	12 to 13	
	CL-SD040	CL-SD040-0235-0	Split Spoon	23.5 to 25	Soil, possible process residue

Table 3-2 Summary of Soil and Sediment Analytical Methods									
Analyte	Analytical Method								
Oregon Analytical Laboratory (OAL)									
Total cyanide	EPA 335.2								
Fluoride	EPA 340.1/340.2 EPA 300								
Total organic carbon (TOC)	EPA 9060								
Volatile organic compounds (VOCs)	EPA 8240								
Total petroleum hydrocarbons (TPH)	DEQ								
Total metals*	CLP								
CH2M HILL Redding Laboratory (QAL)									
Polynuclear aromatic hydrocarbons (PAHs)	EPA 8270								
Total polychlorinated biphenyls (PCBs)	CLP								

*Total metals = aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc.

Abbreviations:

CLP = Contract Laboratory Program

DEQ = Oregon Department of Environmental Quality

EPA = U.S. Environmental Protection Agency

QAL = Quality Analytical Laboratories, Inc.

3.5.2 Physical Analysis

Sediment samples shown in Table 3-3 were analyzed for physical parameters by Advanced Terra Testing, Inc., of Lakewood, Colorado. Physical parameters tested and methods are shown in Table 3-4.

4 Results

Results of the bathymetry and topography studies, aquatic plant survey, field sampling observations, physical analysis, chemical analysis, dike construction historical review, and potential flood impact evaluation are provided in the paragraphs that follow.

Table 3-3 Summary of Sediment Samples Selected for Physical Analysis													
	· · · · · · · · · · · · · · · · · · ·			Summan	of Sedin	nent Samples	Selected for	Physical Ana	lysis				
								Laboratory And	ilysis Performed				
				Sample		Moisture	Atterberg			Specific	Ash/Organic		
Study	Station	Sample	Sampling	Depth	Date	Content	Limits	Grain Sizə	Hydrometer	Gravity	Content		
Area	Number	Designation	Method -	(feet)	Sampled	(ASTM D2216)	(ASTM D4318)	(ASTM D422)	(ASTM D422)	(ASTM D854)	(ASTM D2974)	Comments	
Company	CL-SD006	CL-SD006-0020-0	Sediment Coring	2 to 3	10/19/96	X	X	x		X			
Lake	CL-SD008	CL-SD008-0010-0	Sediment Coring	1 to 2	10/19/96	X	X						
	CL-SD010	CL-SD010-0000-0	Sediment Coring	0 to 2	10/19/96	X	x				x	Process residue	
	CL-\$D012	CL-SD012-0015-0	Sediment Coring	1.5 to 3	10/19/96	×	х	×					
i i	CL-SD014	CL-SD014-0015-0	Sediment Coring	1.5 to 3	10/19/96	×	×						
	CL-SD015	CL-SD015-0010-0	Sediment Coring	1 to 2	10/20/96	×	×						
	CL-SD017	CL-SD017-0015-0	Sediment Coring	1.5 to 3	10/20/96	×	×	x					
	CL-SD023	CL-SD023-0015-0	Sediment Coring	1.5 to 3	10/20/96	×	×	×					
	CL-SD024	CL-SD024-0000-0	Sediment Coring	0 to 1	10/20/96	×		X	×	Х	×	Process residue	
	CL-\$D025	CL-SD025-0010-0	Sediment Coring	1 to 2	10/20/96	×	×						
	CL-SD026	CL-SD026-0020-0	Sediment Coring	2 to 3	10/20/96	×	x						
	CL-SD029	CL-SD029-0020-0	Sediment Coring	2 to 3	10/20/96	×		×					
	CL-SD030	CL-SD030-0000-0	Sediment Coring	0 to 2	10/21/96	×	x				×	Process residue	
	CL-SD030	CL-SD030-0030-0	Sediment Coring	3 to 4	10/21/96	x		X					
	CL-SD031	CL-SD031-0035-0	Sediment Coring	3.5 to 5	10/21/96	×	×		-	X			
	CL-SD035	CL-SD035-0000-0	Sediment Coring	0 to 1	10/21/96	×	×				×	Process residue	
	CL-SD035	CL-SD035-0030-0	Sediment Coring	3 to 4	10/21/96	X	×						

Table 3-4 Summary of Physical Test Parameters and Methods								
Physical Parameter	Method							
Total moisture/solids	ASTM D2216							
Atterberg limits (plastic limit, liquid limit)	ASTM D4318							
Grain size analysis (< No. 200 sieve)	ASTM D422							
Hydrometer	ASTM D4221							
Ash content	ASTM D2974							
Specific gravity of solids	ASTM D854							
Abbreviation: ASTM = American Society for T	esting and Materials							

4.1 Bathymetry and Topography

Figure 4-1 presents the bathymetric and near-shore topographic features of Company Lake and the outfall ditch. At the time of surveying, the water elevation was 15.2 feet NGVD. There were noticeable differences in the bottom depth between the west and east ends of Company Lake. Water depths along the center channel of the east end reached to an excess of 15 feet (0 feet NGVD); in contrast, the deepest areas in the western half of Company Lake were about 5 feet (10 feet NGVD). Bank slopes were steepest along the southern shore below the dike. The slope of the pond bottom was greatest in the eastern end of the pond. The west half of Company Lake had a much more gently sloping bottom.

Figure 4-2 presents the surface features in and around Company Lake. Visual observations of brick along the north face of the dike (near the shoreline) were performed from a boat. The observations generally indicated that brick covered much of the steep southern bank along the eastern arm of the pond. In areas of 100 percent brick coverage (indicated in Figure 4-2), the observed depth of brick ranged from 1 to 3 feet. In areas with 50 percent brick coverage (indicated in Figure 4-2), bricks were observed only on the surface, and were not found at depth. Only the brick that extended to the shoreline was mapped.

4.2 Aquatic Plant Survey

Aquatic plant distributions are shown in Figure 4-3. The highest densities of aquatic plants were found along the shores and shallow zones. Little or no plant growth was observed in the deeper areas. The profundal zone, or area where light penetration is insufficient for plant growth, started from a depth of 10 to 12 feet. This included much of the center of the treatment pond.

Three major plants were identified: *Elodea canadensis* (waterweed), *Potamogeton crispus* (curly-leaved pondweed), and *Potamogeton zosteriformis* (eelgrass pondweed). The two *Potamogeton* species are grouped in Figure 4-3 for display purposes. The amounts of coverage for the two plants were about equal. Dense stands of waterweed were most common along the shorelines. Stands of eelgrass pondweed and curly-leaved pondweed were less dense and were typically found farther offshore, mostly in the west end of the pond. It was common to find sparse stands of the eelgrass pondweed and curly-leaved pondweed interspersed in the stands of waterweed.

4.3 Field Observations

Section 4.3 describes the field observations during sampling, including sediment and soil sampling, for Company Lake and West Company Lake.

4.3.1 Company Lake

The sediment layers were observed and classified during the sediment core sample collection. After each sample was recovered, sediment was characterized with the United Soils Classification System (USCS). Generally two distinct layers were present in each sample. The top layer consisted of a very soft, dark gray or black material, sometimes with a slight sheen; this is referred to as the "process residue layer." This layer had the consistency of a very wet elastic silt throughout the vertical profile; there was no observed difference (consolidated versus unconsolidated) along the profile. The layer beneath, referred to as the "native sediment layer," was generally composed of silt or sandy silt and was found to be generally free from dark coloration.

Figure 4-4 presents the lateral extent and vertical thickness of the process residue layer observed during sediment coring. The lateral distribution of the process residue layer extends from the west shore of the pond to approximately 850 feet east. The thickness of the layer in this area is 0.5 to 2.5 feet. The process residue layer then decreases to a thickness of 0 to 0.2 foot in the middle portion of the pond. The layer then increases to a thickness of 0.5 to 2.0 feet in the last 800 feet of the eastern section of the pond. A volume of 27,000 cubic yards (yd³) of process residue material was estimated on the basis of visual identification (that is, the upper dark gray/black layer).

In general, process residue was observed at varying thicknesses (0.1 feet to 2.5 feet) across the entire lateral extent of the pond. Typically, soft to firm silt and sandy silt were identified beneath the process residue layer. In some coring locations, a relatively thin (1- to 12-inchthick) poorly graded sand layer was observed immediately beneath the process residue layer, and was underlain by the silt and sandy silt described above. Eight cross sections were prepared along north-south transects. These cross sections are presented in Attachment B.

The soil sample obtained within the brick (CL-SD004-0000-0) consisted of a silt with some fine sand. The sample was obtained from soil between and immediately below the bricks.

The sample contained no visible pieces of brick and exhibited no physical indication (color or odor) of process residue.

The soil sample obtained in the depression area east of the outfall ditch (CL-SD002-0000-0) consisted of a silt, with no physical indication (color or odor) of a process residue layer.

4.3.2 West Company Lake

Three borings (CL-SD038, CL-SD039, and CL-SD040) were performed in West Company Lake. An approximate target depth of the process residue layer was calculated on the basis of the elevations of the process residue layer found in Company Lake and the elevation of the ground surface of the borings. In addition, it was thought that the process residue layer would be underlain by the original ground surface that existed before the RMC plant and GS&G facility were constructed, and this surface would be readily identifiable in the samples. Borings were continuously sampled near the target depth to ensure that the layer, if present, could be identified and sampled.

A relatively thin layer of potential process residue was visually identified in Borings CL-SD038 and CL-SD039 at elevations of 12.4 and 13.2 feet NGVD, respectively. The layer was located immediately above what appeared to be the original ground surface, on the basis of visual observation of the samples. The potential process residue layers found in these borings were approximately 6 to 12 inches thick, consisted of dark-gray-stained silt, and did not appear to be composed entirely of process residue, as observed in Company Lake. Samples of this layer and samples below this layer were collected for laboratory analysis. Boring CL-SD040 did not provide any visual evidence of process residue (black staining); however, the collected sample (CL-SD040-0235-0) was at the location where the process residue layer was observed in the other two borings (just above the original ground surface). This sample is considered a potential process residue layer sample, even though it did not exhibit the visual indication (staining) of the process residue layer.

4.4 Physical Analytical Results

Results of physical testing of selected sediments are presented in Table 4-1. Pertinent laboratory results are presented in Attachment C. The process residue tests indicated a USCS classification of MH (elastic silt). Water content of the process residue ranged from 246.1 to 311.7 percent, and the fine-grained (silt/clay) content was 97.1 percent by weight.

The native sediments found below the process layer consisted mainly of silt or sandy silt, with a water content ranging from 31.8 to 75.1 percent. The silt/clay content ranged from 57.1 to 81.1 percent by weight.

4.5 Chemical Analytical Results

The following subsections provide a summary of chemical constituents in the Company Lake sediments, West Company Lake soil, and soil samples collected in the brick and in the depression east of the outfall ditch.

4.5.1 Company Lake Sediment

Results for the process residue and native sediments are discussed in the paragraphs that follow. Data on both sediment layers are compared to evaluate potential effects of the

Table 4-1 Summary of Laboratory Physical Analytical Results

				Laboratory Analytical Results						
		Sample	Moisture	Atterbe	Atterberg Limits %		% Passing USCS		Ash/Organic	1
Station	Sample	Depth	Content (%)	(ASTM D4318)		#200 Sieve	Classification	Gravity	Content (%)	
Number	Designation	(feet)	(ASTM D2216)	LL	Pl	(ASTM D422)	(ASTM 2487)	(ASTM D854)	(ASTM D2974)	Comments
CL-SD006	CL-SD006-0020-0	2 to 3	44.1	32.1	4.8	80.8	ML	2.66		
CL-SD008	CL-SD008-0010-0	1 to 2	33.9	28.2	2.8		ML			
CL-SD010	CL-SD010-0000-0	0 to 2	246.1	62.6	13.8		MH		4.5	Process residue
CL-SD012	CL-SD012-0015-0	1.5 to 3	31.8	NP	NP	65.8	ML			
CL-SD014	CL-SD014-0015-0	1.5 to 3	50.6	34.3	4.6		ML			
CL-SD015	CL-SD015-0010-0	1 to 2	38.9	31.2	5.8		ML			
CL-SD017	CL-SD017-0015-0	1.5 to 3	. 36	NP	NP	57.1	ML			
CL-SD023	CL-SD023-0015-0	1.5 to 3	26.2	NP	NP	57.5	ML			
CL-SD024	CL-SD024-0000-0	0 to 1	248.4			97.1		2.58	6.5	Process residue
CL-SD025	CL-SD025-0010-0	1 to 2	58.4	42.3	9.6		ML			
CL-SD026	CL-SD026-0020-0	2 to 3	50.7	45.5	13		ML			
CL-SD029	CL-SD029-0020-0	2 to 3	41.7			81.1				
CL-SD030	CL-SD030-0000-0	0 to 2	311.7	NP	NP				11,1	Process residue
CL-SD030	CL-SD030-0030-0	3 to 4	29.8			1.7	SP			
CL-SD031	CL-SD031-0035-0	3.5 to 5	45.4	39.7	9.4		ML	2.62		
CL-SD035	CL-SD035-0000-0	0 to 1	286.2	67.6	2.9		MH		9.2	Process residue
CL-SD035	CL-SD035-0030-0	3 to 4	75.1	46.3	14.6		ML			

Abbreviations:

MH = elastic silt

ML = silt

NP = nonplastic

SP = poorly graded sand

process residue on the underlying native sediment. Additionally, the 1996 process residue data are compared with process residue data collected in 1994.

Process Residue Layer

Fifteen sediment samples from the process residue layer were analyzed for the suite of constituents described earlier. A summary of analytical results is provided in Table 4-2, and these results are discussed below. All the data are provided in Attachment D, Table D-1.

Cyanide. Cyanide was detected in 9 of the 15 process residue layer samples. Detections ranged from 1.3 to 7.9 milligrams per kilogram (mg/kg). The highest concentration, 7.9 mg/kg, was found at CL-SD013, at the east end of the pond.

Fluoride. Fluoride was detected in all 15 process residue layer samples analyzed. Concentrations by EPA Method 340.1/.2 ranged from 7,000 to 57,000 mg/kg. The highest concentration by Method 340.1/.2 occurred at CL-SD032, in the west end of the pond. Fluoride by Method 300.0 ranged from 3.5 to 170 mg/kg. The highest concentration by Method 300.0 occurred at CL-SD019, near the middle of the pond.

Total Metals. Of 23 metals, total metals were detected in nearly all samples tested. The exceptions were antimony, silver, and thallium, which were detected in only one sample at concentrations near the detection limits.

Polynuclear aromatic hydrocarbons (PAHs). Of 17 PAHs, 14 were detected in the process residue. Total PAH concentrations ranged from 3.6 to 1,584 mg/kg. The highest concentration was reported in the east end of the pond, at Station CL-SD011.

Polychlorinated biphenyls (PCBs). PCBs were detected in 5 of the 15 samples. Detected total PCBs ranged from 0.45 to 3.1 mg/kg. Aroclors 1248 and 1268 were the only aroclors, with maximum concentrations of 2.1 and 0.96 mg/kg, respectively.

Total petroleum hydrocarbons (TPH). Diesel was detected in six samples, at concentrations ranging from 280 to 2,200 mg/kg. The highest concentration (2,200 mg/kg) was found at CL-SD034 (at the southern end of the outfall ditch) and was considerably higher than values found at other stations. The next highest concentration was 1,400 mg/kg at Station CL-SD037. Other TPH (gasoline or heavy oil) was not detected in any samples.

VOCs. VOCs were not reported above detection limits for any sample analyzed.

Native Sediment Layer

Fourteen native sediment samples were collected from below the process residue layer and analyzed for the suite of constituents. A summary of analytical results is provided in Table 4-3. All the data are provided in Attachment D, Table D-2.

Cyanide. No cyanide was detected in any of the 14 samples.

Fluoride. Fluoride was detected in all 14 samples. Fluoride (Method 340.1/340.2) concentrations ranged from 300 to 3,300 mg/kg. The highest detection (3,300 mg/kg) was found at CL-SD034, at the entrance to the outfall ditch. Fluoride (Method 300.0) concentrations ranged from 14 to 89 mg/kg.

Total Metals. Antimony, mercury, selenium, silver, and thallium were not detected in any of the samples analyzed. All samples contained varying amounts of the other metals for

	No. of	No. of	Minimum	Maximum	Minimum	Maximum
Analyte (mg/kg)*	Samples	Detects	Detect	Detect	Nondetect	Nondetec
Cyanide, Total	15	9	1.3	7.9	1	
Fluoride by 340.1/.2	15	15	7000	57000		
Fluoride By 300.0	15	15	3.5	170		
Total Organic Carbon	15	15	20100	185000		
otal Metals						
Aluminum	15	15	16100	74200	0.5	
Antimony	15	1	5.00	3.6	2.5	
Arsenic	15 15	15 15	5.03	16.5		
Barium	15	15	87.1 0.85	267 3.39		
Beryllium Cadmium	15	14			0.5	(
Calcium	15	15		70500	0.5	
Chromium	15	15	20.8			
Cobalt	15	15		32.2		
Copper	15	15		288		
Iron	15	15				
Lead	15	15		114		
Magnesium	15	15				
Manganese	. 15	15		2220		
Mercury	15	15	0.23	1.07		
Nickel	15	15	42.5	790		
Potassium	15	15	715	3350		
Selenium	15	14	1.3	6.7	1	
Silver	15	1		1.1	1	
Sodium	15	15	1260			
Thallium	15	1		1.3	1	
Vanadium	15	15	 			
Zinc AHs	15	15	73.9	1010		
2-Methylnaphthalene	15	0	1	1	0.49	1
Acenaphthene	15	2		0.98	0.49	
Acenaphthylene	15	0	1		0.49	
Anthracene	15	15	0.064	26		
Benzo(a)anthracene	15	15				
Benzo(a)pyrene	15	15	0.055	180		
Benzo(b)fluoranthene	15	15	0.38			
Benzo(g,h,i)perylene	15	7			0.49	
Benzo(k)fluoranthene	15	15				
Chrysene	15	15				
Dibenzo(a,h)anthracene	15		·		0.49	
Fluoranthene	15			180	24	
Fluorene	15	7			1.9	
Indeno(1,2,3-c,d)pyrene	15			93		
Naphthalene Phenanthrene	15 15			39	0.01 100	
Prienanuntene Pyrene	15				100	 '
CBs	1 13	113	0.21	100		L
Aroclor 1262	15	0		T	0.049	
Aroclor 1016	15				0.049	
Aroclor 1221	15				0.1	
Aroclor 1232	15				0.049	
Aroclor 1242	15				0.049	
Aroclor 1248	15			2.1	0.55	
Aroclor 1254	15				0.049	
Aroclor 1260	15				0.049	
Aroclor 1268	15			0.96	0.049	
PH						
TPH (HCID)	15					
Diesel by 8015	15			2200	2	
Gasoline	15	0	ł [l l	I	1

^{*} Summary of volatile organic compounds not shown; all analytes below detection limits (see Attachment D, Table D-1).

Abbreviation: HCID = hydrocarbon identification

Cummany	of Company	Laka Nati		Table 4-3	olumbia Pivo	r Backgroup	d Metals Data	
Summary	of Company	Lake Nau		ipany Lake	olulibia nive		Columbia River	Background
	No. of	No. of	Minimum	Maximum				
Analyte (mg/kg) ^a	Samples	Detects	Minimum Detect	Maximum Detect	Minimum Nondetect	Maximum Nondetect	Detect	Detect
Cyanide, Total	14	0			1	1		
Fluoride by 340.1/.2	14		300	3300				
Fluoride By 300.0	14							
Total Organic Carbon	14	14	2060	16400				
Total Metals			·		<u> </u>			
Aluminum	14			24000			5000	16300
Antimony	14		1	10.1	2.5	2.5		
Arsenic	14	14		10.1			1.5	4.4
Barium	14				0.5	0.5	60.8 0.62	164.5
Beryllium Cadmium	14	2			0.5	0.5		0.68 1.9
Calcium	14				0.5	0.5	2400	3600
Chromium	14						5.47	18.9
Cobalt	14	14					11	10.9
Copper	14	14					2.39	24.8
Iron	14	14					10243	18900
Lead	14	11			5	5		17.6
Magnesium	14	14			Ŭ.		2700	3500
Manganese	14	14			7		270	270
Mercury	14	0			0.2	0.2		0.08
Nickel	14	14	9.93	38.4			9.3	18
Potassium	14	14					440	770
Selenium	14			1	1	1		
Silver	14	0			1	1		
Sodium	14	14	483	967			200	220
Thallium	14	0		•	1	1	,	
Vanadium	14	14	43.6	64.4			45	46
Zinc	14	14	28.9	138			44	155
PAHs								
2-Methylnaphthalene	14				0.43	0.56	()	
Acenaphthene	14		·	0.092	0.43	0.56		
Acenaphthylene	14				0.43	0.56		
Anthracene	14				0.43	0.56		
Benzo(a)anthracene	14				0.45	0.56		
Benzo(a)pyrene	14				0.45	0.54		
Benzo(b)fluoranthene	14				0.45	0.56		
Benzo(g,h,i)perylene	14				0.45	0.56		
Benzo(k)fluoranthene	14				0.45	0.56		·
Chrysene	14			0.29	0.45	0.56		
Dibenzo(a,h)anthracene	14			0.44	0.43			
Fluoranthene	14			0.44				
Fluorene Indeno(1,2,3-cd)pyrene	14			0.000	0.43			
Naphthalene	14			0.082	0.43 0.01			
Phenanthrene	14		1		0.01			
Pyrene	14			0.07	0.45			
PCBs	1	1	0.001	0.07	0.45	0.50	<u> </u>	•
Aroclor 1016	14	1 0	1	1	0.043	0.056	1	
Aroclor 1221	14				0.088			
Aroclor 1232	14				0.043			
Aroclor 1242	14				0.043			
Aroclor 1248	14				0.043		<u> </u>	
Aroclor 1254	14			1	0.043			
Aroclor 1260	14				0.043			
Aroclor 1262	14			1	0.043			
Aroclor 1268	14				0.043			
ТРН	.,	·					<u>u</u>	,
TPH (HCID)	14	1 0)				1	
***************************************		•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·		

^a Summary of volatile organic compounds not shown; all analytes below detection limits (see Attachment D, Table D-2).

Only data on metals shown for comparison. From Technical Memorandum DS No. 12, *Background Data Summary for RMC-Troutdale* (CH2M HILL, November 22, 1996).

Abbreviation: HCID = hydrocarbon identification

which analyses were performed. Because metals occur naturally in soil and sediment, detected background metal concentration ranges for the Columbia River are also shown in Table 4-3. Native sediment metal concentrations in Company Lake were generally within the sediment background ranges; only calcium and potassium appeared to be at much higher concentrations in Company Lake sediment than in Columbia River sediment.

PAHs. PAHs were detected in 8 of the 14 samples. Total PAH concentrations ranged from 0.061 to 1.23 mg/kg.

PCBs. PCBs were undetected in all 14 samples.

TPH. Petroleum hydrocarbons were undetected in all 14 samples.

VOCs. VOCs were undetected in all 14 samples.

Comparison Between Process Residue and Native Sediment

The analytical results for the process residue and native sediment were compared to evaluate which constituents might have leached and been transported from the overlying process residue layer to the underlying native sediment. This evaluation provides some insight into the potential for groundwater to be affected by the process residue. Table 4-4 provides a comparison of the two sediment layers. The concentrations in the process residue were much greater than those in the native sediment for fluoride (Method 340.1/.2), metals, and PAHs. As discussed earlier, it does not appear the metals have leached significantly to the native sediment because concentrations in the native sediment are similar to background concentrations. Cyanide, PCBs, and TPH were detected in the process residue layer but not in the underlying native sediment.

The most notable comparison between the two sediment layers was that for fluoride. Fluoride concentrations measured by EPA Method 340.1/.2 are thought to represent a total concentration of fluoride. Concentrations of total fluoride in the process residue were much greater than those found in the native sediment (Figure 4-5). In contrast, fluoride concentrations measured by Method 300.0 were quite similar in both sediment layers (Figure 4-6). Method 300.0 is a leaching test and is believed to represent soluble fluoride. Additional investigation into these two fluoride methods is being conducted to more fully understand how results obtained with the methods relate to soil concentrations and leachability. However, on the basis of our current understanding of fluoride methods, it appears that the underlying sediments are affected by soluble fluoride. This result suggests that groundwater downgradient of Company Lake may also be affected by fluoride. Fluoride transport could result from surface water discharge to groundwater, from leaching of sediments, or both.

Comparison with 1994 Data

CH2M HILL sampled surface sediments (process residue) in Company Lake as part of the removal site assessment (RSA) in 1994. Six samples (including one in the outfall ditch) were collected in a grab sampler and analyzed for cyanide, fluoride, total organic carbon (TOC), metals, PAHs, PCBs, and TPH. Sample locations are shown in Figure 4-7. Sampling methods and results are summarized in the Draft CSS (CH2M HILL, April 5, 1996).

A recent independent review of laboratory QA/QC procedures for the 1994 sediment data has revealed several problems with the 1994 data set; as a result, data previously reported

Comparison o	f 1996 Pro	ocess Re		e 4-4 d Native Se	ediment D	ata for C	ompany	Lake
		Process	Residue			Native S	Sediment	
	No. of	No. of	Minimum	Maximum	No. of	No. of	Minimum	Maximum
Analyte (mg/kg)*	Samples	Detects	Detect	Detect	Samples	Detects	Detect	Detect
Cyanide, Total	15	9	1.3	7.9	14	0 14	200	3300
Fluoride by 340.1/.2 Fluoride By 300.0	15 15	15 15	7000 3.5	57000 170	14	14	300 14	3300 89
Total Organic Carbon	15	15	20100	185000	14	14	2060	16400
Total Metals	<u> </u>		20100	100000	,		2000	10100
Aluminum	15	15	16100	74200	14	14	8190	24000
Antimony	15	1		3.6	14	0		
Arsenic	15	15	5.03	16.5	14	14	2.2	10.1
Barium	15	15	87.1	267	14	14	40.4	171
Beryllium	15	15	0.85	3.39	14	2	0.6	
Cadmium	15	14	0.76	8.44	14	2	0.63	0.76
Calcium	15	15	10100	70500 123	14	14 14	3890 12.2	7030 28
Chromium Cobalt	15 15	15 15	20.8 6.82	32.2	14	14	5.58	11.6
Copper	15	15	43.3	288		14	14.8	43.3
Iron	15	15	9500	26500		14	12900	
Lead	15	15	23.8	114	14	11	5.6	
Magnesium	15	15	1700	5920	14	14	1650	
Manganese	15	15	155	2220	14	14	103	
Mercury	15	15	0.23	1.07	14	0		
Nickel	15	15	42.5	790		14	9.93	
Potassium	15	15	715	3350		14	476	2050
Selenium	15	14	1.3	6.7	14	0		
Silver	15	1	4000	1.1	14	0	400	007
Sodium Thallium	15 15	15	1260	6800		14	483	967
Vanadium	15	1 15	62.2	1.3 271	14	14	43.6	64.4
Zinc	15	15	73.9			14	28.9	
PAHs	1 13		70.3	1010			20.0	100
2-Methylnaphthalene	15	0		<u> </u>	14	0		1
Acenaphthene	15	2	0.17	0.98	14	1		0.092
Acenaphthylene	15	0			14	0		
Anthracene	15	15	0.064			0		
Benzo(a)anthracene	15	15	0.56			4	0.06	-
Benzo(a)pyrene	15	15	0.055			3	0.056	
Benzo(b)fluoranthene	15 15	· 15	0.38			5	0.045 0.068	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	15	15	0.25			3	0.008	
Chrysene	15	15	0.23			7	0.061	
Dibenzo(a,h)anthracene	15	10	0.062		14	0	0.001	0.20
Fluoranthene	15	13	1	180		4	0.056	0.44
Fluorene	15	7	0.17	11	14	0		
Indeno(1,2,3-cd)pyrene	15	13	1.4	93		1		0.082
Naphthalene	15	0			14	0		
Phenanthrene	15		0.12					
Pyrene	15	15	0.21	160	14	3	0.061	0.07
PCBs Aroclor 1016	15			1	14	0	i i	
Aroclor 1016 Aroclor 1221	15	0			14			
Aroclor 1232	15	· 0			14	0		
Aroclor 1242	15				14			
Aroclor 1248	15	4	0.42	2.1		0		
Aroclor 1254	15	0			14			
Aroclor 1260	15	0			14	0		
Aroclor 1262	15				14			
Aroclor 1268	15	3	0.59	0.96	14	0		<u> </u>
TPH	T			···	n			
TPH (HCID)	15		NA			0		
Diesel by 8015	15		280	2200	 		ļ	
Gasoline	15 15			<u> </u>	 			
Heavy Oil					<u> </u>	<u> </u>	l	L
* VOCs analyzed but not do Abbreviations:	etectea in pr	ocess resid	ue or native	e sediment.				
Abbreviations: HCID = hydrocarbon identif	ication							
NA = not applicable	ioau0H							•
U = undetected								
								

600

300

Figure 4-5

Reynolds Metals Company

Troutdale, Oregon

Fluoride (Method 340.1/.2) in Company Lake Sediment

Company Lake Supplemental Data Summary

ō

300

Figure 4-6
600 Fluoride (Method 300.0) in Company Lake Sediment
Reynolds Metals Company
Troutdale, Oregon
Company Lake Supplemental Data Summary

as acceptable have been rejected. Most notably, the PAH data were analyzed by EPA Method 8270-SIM (selected ion monitoring), which is intended for low-PAH samples. Because the PAH concentrations are relatively high in Company Lake, the detected concentrations were outside the range of calibration. Other analyte data (fluoride, TOC, metals, PCBs, and TPH) were also rejected because the detected concentrations were outside the calibration range. On the basis of this review of the calibration and sample data, it was determined that the laboratory did not dilute and reanalyze to accurately quantify these higher concentrations, and therefore the data should not be used quantitatively. However, the data may be used qualitatively, that is, to indicate that a substance was detected at an unspecified concentration.

Table 4-5 provides the requalified data for the 1994 sampling event. The "RC" qualified data are the rejected data. The "JC" indicates that the laboratory reported the results for higher dilutions, even though the protocol dictated that the lower dilution results be reported. "JC" values should be used with caution because the data are less accurate and precise.

Table 4-6 provides a comparison between process residue concentrations for the 1996 and 1994 sampling events. Only analytes for which there were acceptable 1994 data are shown. Different collection methods were used for the two sampling events, and thus their comparability might have been affected: the 1994 samples were collected as a surface grab (from the top 0.1 foot) and the 1996 samples were collected from cores (from the top 1 to 1.5 feet). With this caveat, the data indicate that most constituents were similar in the two sampling events. Metal concentrations appeared to be higher for 1996, but this result may have been caused by the low number of acceptable 1994 values or the difference in sampling methods. Some individual 1996 PAH concentrations shown in Table 4-6 were lower than 1994 concentrations; it is uncertain whether these differences are a result of the sampling method or the 1994 data quality.

4.5.2 Dike Brick Soil Sample

A soil sample (CL-SD004-000-0) was collected from the base of the brick area along the dike on the south shore of Company Lake. The purpose of the sample was to evaluate brick as a potential source to groundwater and surface water and sediment in Company Lake. Table 4-7 shows the results on this brick soil sample. The results for PCBs, VOCs, and TPH are not shown, but all were undetected (see Attachment D, Table D-1). For comparison, Table 4-7 also shows data for the historical dike samples; brick soil samples collected along the Columbia and Sandy Rivers; Company Lake sediment samples; and background samples for upland and wetland soils.

The dike brick soil samples had slightly higher concentrations of fluoride and some metals than the brick soil samples collected along the Columbia and Sandy Rivers or the background soil samples. Low PAH levels were detected (maximum total PAH concentration of 4.2 mg/kg) in the dike soil samples, whereas PAHs were not detected in the river brick soil samples. It appears that the dike brick may contribute low levels of fluoride, some metals, and PAHs to the underlying soil matrix.

In comparison, the brick soil samples showed significantly lower concentrations of fluoride and PAHs than did the Company Lake sediment samples. Metal values for the brick soil were lower (or at the low end of the detected concentrations) than metal values for the

30

		Table 4	-5			
	Process Resid			or 1994		
Analyte		С	ompany Lake			Outfall Ditch
Sample 1D	RM-SD10	RM-SD6	RM-SD7	RM-SD8	RM-SD9	RM-SD5
Station ID	RM-SD10	RM-SD6	RM-SD7	RM-SD8	RM-SD9	RM-SD5
Sample Date	8/19/94	8/19/94	8/19/94	8/19/94	8/19/94	8/19/94
Sample Depth (feet) Inorganic Compounds (mg/kg)	0.1	0.1	0.1	0.1	0.1	0.1
Cyanide, total	0,5 U	0.5 U	0.5 U	10	0.5 U	0,5 U
Fluoride (Method 340.2)	5800 RC	1600 RC	1800 RC	780 RC	1200 RC	1200 RC
Total organic carbon	130000 RC	210000 RC	180000 RC	87000 RC	240000 RC	28000 RC
Total Metals (mg/kg)	1.0000	, 4				
Aluminum	48000 RC	26000 RC	33000 RC	63000 RC	44000 RC	25000
Antimony	0.5 UJ	0.5 UJ	0.5 W	0.5 UJ	0.5 UJ	0.5 UJ
Arsenic	22 RC	18 RC	24 RC	50 RC	20 RC	6.2 RC
Barium	420 LRC	410 LRC	410 LRC	420 LRC	380 LRC	140 LRC
Beryllium	2.8	2.7	4.3	3.4	0.2 U	0.2 U
Cadmium Calcium	10 120000 RC	16 110000 RC	17 130000 RC	4 58000 RC	. 37 84000 RC	2.3 22000
Chromium	23 ·	32	40	78	28	19
Cobalt	17	10	15	38	16	13
Copper	170 RC	170 RC	190 RC	360 RC	220 RC	75
Iron	33000 RC	36000 RC	45000 RC	59000 RC	40000 RC	24000
Lead	79	170 RC	190 RC	74	300 RC	30
Magnesium	2000	2100	2400	3400 RC	2300	4700 RC
Manganese	4600 RC	1600 RC	2000 RC	3100 RC	1300 RC	410
Mercury	1.4	1.7	1.8	2.2	0.57	0.28
Nickel	150 RC	140 RC	180 RC	600 RC	150 RC	30
Potassium Selenium	1500 RC 5,8 RC	1200 RC 6.4 RC	1500 RC 6,9 RC	2600 RC 3.4 L	1600 RC 5.8 RC	1500 RC 0.91 L
Silver	0.2 U	0.4 RC	0.9 RC	0.2 U	0.2 U	0.91 L
Sodium	4400 RC	3700 RC	3800 RC	4600 RC	3500 RC	2000
Thallium	2 KRC	4.1 KRC	4.5 KRC	0.2 U	7 KRC	0.72 KRC
Vanadium	72 L	83 L	120 LRC	280 LRC	75 L	50 L
Zinc	520 LRC	420 LRC	410 LRC	240 LRC	680 LRC	160 LRC
PAHs (mg/kg)	1					
Acenaphthene	0.34 U	12 U	1.7 U	0.78	7.8 U	1.7 U
Acenaphthylene Anthracene	0.34 U 15 JC	12 U	1.7 U 47 JC	0.067 U 3.2 JC	7.8 U 180 JC	1.7 U 1.7 U
Benzo(a)anthracene	270 RC	1700 RC	620 RC	43 RC	2400 RC	1.7 0 110 RC
Benzo(a)pyrene	220 RC	1800 RC	600 RC	40 RC	2400 RC	120 RC
Benzo(b)fluoranthene	550 RC	4600 RC	1400 RC	· 82 RC	5800 RC	250 RC
Benzo(g,h,i)perylene	210 RC	1200 RC	380 RC	27 RC	1500 RC	81 JC
Benzo(k)fluoranthene	210 RC	1100 RC	380 RC	24 RC	1500 RC	69 JC
Chrysene	620 RC	4400 RC	1400 RC	92 RC	5800 RC	260 RC
Dibenzo(a,h)anthracene	64 RC	360 JC	100 RC	7.6 RC	440 RC	22 JC
Fluoranthene	92 RC	540 JC	220 RC	27 RC	1100 RC	66 JC
Huorene	0.34 U	12 U	1.7 U	0.067 U	7.8 U	1.7 U
Indeno(1,2,3-c,d)pyrene Naphthalene	210 RC 0.34 U	1100 RC	360 RC	28 RC 0.067 U	1500 RC 7.8 U	75 JC 1.7 U
Phenanthrene	12 JC	12 U	1.7 U	4.3 RC	100 JC	1.7 U
Pyrene	100 RC	470 JC	200 RC	28 RC	820 RC	56 JC
PCBs (mg/kg)						
Aroclor 1016	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aroclor 1221	0.1 U	. 0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Aroclor 1232	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aroclor 1242	0.05 U	0.05 U	0.05 U	0.05 U	0,05 U	0.05 U
Aroclor 1248	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Aroclor 1254.	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Arocior 1260 TPH (mg/kg)	2 RC	2 RC	3.5 RC	2.8 RC	2.8 RC	0.31 JC
Diesel/related	900	1300	1300	600	1700	550
Gasoline	2 U	2 U	2 U	2 U	1700 2 U	2 U
Heavy oil/related	1200 RC	1500 RC	710 RC	620 RC	1300 RC	660 RC
Abbreviations:	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 110		

Abbreviations:

J = estimated value
JC = result reported for higher dilutions; accuracy and precision are expected to be lower than for lower dilutions
K = estimated value; may be blased high on basis of spike recovery results
L = estimated value; may be blased low on basis of spike recovery results
RC = rejected; value outside calibration range

<u>U = undetected</u>

	Table 4-6 Comparison Between 1996 and 1994 Process Residues											
C								b				
			ke Process				ike Process					
	No. of		Minimum		No. of		Minimum	Maximum				
Analyte (mg/kg)	Samples	Detects	Detect	Detect	Samples	Detects	Detect	Detect				
Cyanide, Total	15	9	1.3	7.9	6	1		10				
Total Metals												
Aluminum	15	15	16100	74200]		25000				
Antimony	15	1		3.6		0						
Beryllium	15	15	0.85	3.39		4		4.3				
Cadmium	15	14	0.76	8.44		6	2.3					
Calcium	15	15	10100			1		22000				
Chromium	15	15	20.8	123	6	6						
Cobalt	15	15	6.82	32.2	6	6	10					
Copper	15	15	43.3	288		1		75				
Iron	15	15	9500	26500		1		24000				
Lead	15	15	23.8	114		3						
Magnesium	15	15	1700	5920		4	2000					
Manganese	15	15	155			1		410				
Mercury	15	15	0.23	1.07	6	6	0.28					
Nickel	15	15	42.5	790	1]		30				
Selenium	15	14	1.3	6.7	2	2		3.4				
Silver	15	1		1.1	6	0						
Sodium	15	15	1260	6800		1		2000				
Thallium	15	1		1.3		0						
Vanadium	15	15	62.2	271	4	4	50	83				
PAHs												
Acenaphthene	15	2	0.17	0.98	<u> </u>	1		0.78				
Acenaphthylene	15	0			6	C						
Anthracene	15	15				4	3.2*					
Benzo(g,h,i)perylene	15	7	1.3			1		81*				
Benzo(k)fluoranthene	15	15		150]		69*				
Dibenzo(a,h)anthracene	15	10	0.062	22		2		360*				
Fluoranthene	15	13		180		2		540*				
_ Fluorene	15	7	0.17	11								
Indeno(1,2,3-c,d)pyrene	15	13		93		1		75*				
Naphthalene	15	0	1		6	0		1001				
Phenanthrene	15	14										
Pyrene	15	15	0.21	160	2	2	56*	470*				
PCBs	T 757	- 0					т					
Aroclor 1016	15	0			6	0						
Aroclor 1221	15	0			6			<u> </u>				
Aroclor 1232	15	0			6			<u> </u>				
Aroclor 1242	15	0			6	0						
Aroclor 1248	15	4		2.1	6	0						
Aroclor 1254	15			-	6	0	' 	0.01*				
Aroclor 1260	15	0	<u> </u>	L	<u> </u>		<u> </u>	0.31*				
TPH Discolor 2015	35		1 000	0000		,	EFA	אסיינ ו				
Diesel by 8015	15	6	280	2200	,6	6	550	1700				

Collected as integrated sample from 0- to 1-foot depth or 0- to 1.5-foot depth for core samples.

Collected as surface grab from top 0.1 foot. Only analytes for which there are acceptable 1994 data are shown.
Symbol: * = result is qualified; result reported for higher dilutions; accuracy and precision expected to be lower than for lower dilutions

Table 4-7													
Comparison of Company Lake Shoreline Brick Soil Samples with Other Brick Samples,							Company Lake Sediments, and Background Values						
Analyte (mg/kg)	Brick Soil Adja	cent to Con	npany Lake			nbia and San			:				ĺ
	CL-SD004-			CR-SB007-	SR-SB001-	SR-SB002-	SR-SB003-						
Sample ID:	0000-0	ND-1-S	ND-2-S	0000-0	0000-0	0000-0	0000-0						
Station ID:	CL-SD004	ND-1	ND-2	CR-SB007	SR-SB001	SR-SB002	SR-SB003	Company Lake Sediments Background ^b					
Description	Dike Brick ^a	Dike Brick	Dike Brick	Columbia R. Brick	Sandy R. Brick	Sandy R. Brick	Sandy R. Brick	1996 Process Residue Data		Upland \$0		Wetland Soll	
Date Sampled:	10/16/96	8/4/94	8/4/94	9/5/96	9/6/96	9/6/96	9/6/96	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
Cyanide, Total	1 U	0.1 U	0.1 U	1 U	1 U	1 U	1 U	1 U	7.9	1 U	2.6 U	1 U	3 U
Fluoride by 340.1/.2	420			340	270	270	350	7000	57000	180	240	120	250
Fluoride by 340.2M				4	2.5 U	2.5 U	11	*					
Fluoride By 300,0	9.3							3.5	170				
Carbon	4430			5920	5120	21100	30200	20100	185000	7950	58100	17400	26100
Total Metals													
Aluminum	19000 J			9500	10900	14500	9710	16100	74200	7270 J	10500	4720 J	14600
Antimony	2.5 UJ			2.5 U	2.5 U	2.5 U	2,5 U	2.5 ∪	3.6	2.5 U	5.9 U	2.5 U	2.5 J
Arsenic	2.6			1.7	1,1	1,9	1.4	5.03	16.5	0.984	1.6	1.1	11.9
Barium	140			51.4	42.8	66,1	36.8	87.1	` 267	22.8	63	33.8	107
Beryllium	0.52			0.5 U	0.5 U	0.5 ป	0.5 U	0.85	3.39	0.05 U	0.48 BJ	0.5 U	0.72
Cadmlum	0.5 U			0.5 U	0.5 U	0.5 U	0,5 U	0.5 U	8.44	0.41 U	0.05 U	0.47 U	0.77
Calcium	5600 (J)			3960	3670	4140	3810	10100	70500	2200	2860	2160	3740
Chromium	25.8			12.2	14.6	18.8	13.6	20.8	123	7.7	11.5	8.65	19.3
Cobalt	9.76			6.87	6.95	10.1	6.43	6.82	32.2	2.61	5.1 B	2.5 U	7.21
Copper	27.8			17.2	18.4	24.2	16.5	43.3	288	9.32	18.9 J	7.9 J	28.5
Iron	25900			13400	14100	19200	13400	9500	26500	8160	11800	6190	122000 D
Lead	10.2			5.8	5.4	8.1	6.2	23.8	114	5.4	25.9	0.71 J	28
Magnesium	5550			2620	2420	3390	2130	1700	5920	791	1590	924	3950
Manganese	239			166	147	276	158	155	2220	68.5	192 J	63.7	252
Mercury	0.2 U			0.2 U	0.2 U	0.2 U	0,2 U	0.23	1.07	0.2 U	0.08 J	0.09 UJ	0.2 U
Nickel	27.8			11.2	14.8	17.1	11.7	42.5	790	5.9	9.6 J	5.25	15.5
Potassium	1470			444	396	500	338	715	3350	240	422	266	1900
Selenium	1 บ			1 U	טו	1 U	1 U	1 U	6.7	0.32 UJ	า บ		1 U
Silver	1 U			1 ປ	1 U	1 U	1 U	1 U	1.5 U	0.33 U	1 U	0.37 U	1 U
Sodium	694			662	1010	648	642	1260	6800	363	670	262	647
Thallium	1 U			1 U	1 U	1 U	1 U	1 U	1.3 U	0.41 UJ	1 U	0.18 U	1 U
Vanadium	73.3			41.6	45.9	52.5	44.3	62.2	271	32.1	58.1	33	125
Zinc	62			34.2	33	47.1	32.8	73.9	1010	19.2	102	26.6	140
Total PAHs	1.3	0.2 U	4.2	0.33 U	0.33 U	0.33 U	0.33 U	3.6	1584	0.3 U	10 U	0.3 U	0.099 J

Results for PCBs, VOCs, and TPH not shown; all were below detection limits (see Attachment D, Table D-1).

From Technical Memorandum DS No. 12, Background Data Summary for RMC-Troutdale (CH2M Hill, November 22, 1996).

Abbreviations and Symbols:

U = estimated value

U = undetected

^{() =} advisory flag based on professional judgment rather than method protocol

Company Lake sediment, with the exception of iron and magnesium. These results suggest that the bricks probably are not a significant source to sediments.

In RMC's AWARE (avoid waste and reduce emissions) program, tests have been conducted on "dirty" brick from the bakehouse to determine constituent concentrations that might leach or otherwise contribute constituents as they break down. "Dirty" bricks were collected from the inner flue walls, where were in contact with the baking anodes and were expected to have the highest accumulation of constituents because they came into contact with the pitch from the anode. A toxicity characteristic leaching procedure (TCLP) was conducted on the "dirty" brick. The TCLP method uses a relatively strong acid solution to measure leaching, and resulting TCLP concentrations would be higher than concentrations leaching from bricks exposed to normal rainwater. Additionally, this "dirty" brick was pulverized and standard soil methods were used to analyze constituents; this method provides an indication of the potential for constituent contributions if weathering of brick occurs (that is, if particulates erode from the brick). The AWARE results are shown in Table 4-8.

By the TCLP method, low levels of fluoride [1.2 milligrams per liter (mg/L)] and chromium (0.033 to 0.18 mg/L) were detected in the leachate from the bricks. Not all metals detected in brick soil were analyzed for in the "dirty" brick samples, but the results do indicate a low potential for contributing concentrations of the eight metals analyzed. No VOCs, except chloroform, were detected; the chloroform probably was an artifact of laboratory contamination.

By the soil method, most total metals were not detected in the "dirty" brick. The only detected metals were arsenic (1 mg/kg), chromium (16 mg/kg), copper (9 mg/kg), and zinc (3 mg/kg). Again, not all metals were analyzed for, but these results indicate that the bricks could contribute low levels of metals. PAHs were detected in one of the two samples at a concentration of 7.7 mg/kg. This concentration is comparable to the PAH concentrations found in the dike brick soil samples.

In summary, leaching or particulate contribution from the brick along the COE dike appears to be an insignificant source to Company Lake sediment or interstitial soil. Additionally, the interstitial soil beneath the brick is inaccessible to direct-contact exposure. Leaching to groundwater is also a potential pathway. PAHs are relatively insoluble and are not expected to leach. Fluoride and metals may leach to groundwater, but the concentrations are expected to be insignificant in comparison to the potential leaching from Company Lake sediment.

4.5.3 Soil Sample in Depression East of Outfall Ditch

One surface soil sample (CL-SD002-000-0) was collected in a depression east of the outfall ditch, where overflow of the outfall ditch was observed during flooding. The purpose of this sample is to determine whether constituents in the outfall ditch have affected soil concentrations in the depression. Table 4-9 compares the depression soil sample results with background concentrations for upland and wetland soils. The results indicate that overflow from the outfall ditch has probably contributed low concentrations of constituents to this depression area. Fluoride and metal concentrations in the depression soil are slightly

Analytical Results of Fluc Sample Date	9/6/90	8/9/95	2/28/96	11/1/96
ınalyte				
CLP Method (mg/L)	•			
Fluoride (340.2)			1.2	
Metals				
Arsenic	0.25 U	0.1 U		
Barium	0.23	0.5 U		
Cadmium	0.0054 U	0.01 U		
Chromium	0.033	0.18		
Lead	0.055 U	0.05 U		
Mercury ,	0.0002 U	0.001 U		
Selenium	0.005 U	0.1 U		
Silver	0.011 U	0.01 U		
VOCs	•			
Benzene	0.0053 U	0.2 U		
Carbon tetrachloride	0.005 U	0.2 U		
Chlorobenzene	0.0047 U	0.2 U		
Chloroform	0.031	0.2 U		
1,4-Dichlorobenzene	0.005 U	0.2 U		
1,2-Dichlorobenzene		0.2 U		
1,1-Dichlorobenzene	0.005 U	0.2 U		
Methyl ethyl ketone	0.099 U	5 U		
Tetrachloroethene	0.005 U	0.2 U		
Trichloroethene	0.005 U	0.2 U		
Vinyl Chloride	0.0099 U	0.1 U	1	
oil Method (mg/kg)	<u></u>			
Fluoride (300.0)		<u> </u>	15	
Metals				- 10.
Antimony				10 t
Arsenic				
Beryllium				11
<u>Cadmium</u>				11
Chromium				16
Copper				20 l
Lead				0.2 (
Mercury				10 t
Nickel Selenium				7 (
Silver				21
Thallium				1
Zinc		·		3
PAHs		, 1971 , 1971, 19	l	
Acenaphthene		101	0.3 U	
Acenaphthylene		iŭl	0.3 U	
Anthracene		0.1 U	0.3 U	
Benzo(a)anthracene		0.8	0.3 U	
Benzo(a)pyrene		1	0.3 U	
Benzo(b)fluoranthene		1.i	0.3 U	
Benzo(g,h,i)perylene		0.5	0.3 U	
Benzo(k)fluoranthene		0.5	0.3 U	
Chrysene		0.7	0.3 U	
Dibenzo(a,h)anthracene		0.1 U	0.3 U	
Fluoranthene		1.2	0.3 U	
Fluorene		0.2 U	0.3 U	
Indeno(1,2,3-cd)pyrene		0.4	0.3 U	
Naphthalene		10	0.3 U	
Phenanthrene		0.4	0.3 U	
Pyrene		1.1	0.3 U	

	Soil Sample from	Table 4-9 n Depression Ed	ast of Outfall D	itch				
Sample ID:	CL-SD002-0000-0ª							
Station ID:	CL-SD002		Bac	kground ^b				
Date Sampled:	10/15/96	Upland			land Soil			
Depth (feet)	0 to 1.5	Minimum	Maximum	Minimum	Maximum			
Analyte (mg/kg)								
Cyanide, Total	10	10	2.6 U	1 U I	3 U			
Fluoride by 340.1/.2	570	180	240	120	250			
Fluoride By 300.0	20							
Total Organic Carbon	10500	7950	58100	17400	26100			
otal Metals	1 .0000	7,755		1/300	20.00			
Aluminum	25800 J	7270 J	10500	4720 J	14600			
Antimony	2.5 UJ	2.5 U	5.9 U	2.5 U	2.5 J			
Arsenic	10.1	0.984	1.6	1.1	11.9			
Barlum	152	22.8	63	33.8	107			
Beryllium	0.78	0.05 U	0.48 BJ	0.5 U	0.72			
Cadmium	1.17	0.41 U	0.05 U	0.47 U	0.77			
Calcium	6440 (J)	2200	2860	2160	3740			
Chromium	30.2	7.7	11.5	8.65	19.3			
Cobalt	12	2.61	5.1 B	2.5 U	7.21			
Copper	46.3	9.32	18.9 J	7.9 J	28.5			
fron	32300	9.32 8160	11800	6190	122000 D			
Lead	37.8	5.4	25.9	0,71 J	122000 D 28			
	6120	5.4 791	1590	924	28 3950			
Magnesium Managnese	473	68.5	1590 192 J	63.7	. 252			
Trianganoto	0.2 U	08.5 0.2 U		0.09 UJ	. 252 0.2 U			
Mercury Nickel	25.8	5.9	9.6 J	5,25				
Potassium	25.8	240	9.6 J 422	5,25 266	15.5 1900			
Selenium	1 U	0.32 UJ	422 1 U	200	1900 1 U			
Silver	10	0.32 U	10	0.37 U	10			
Sodium	939	363	670	262	647			
Thallium	939	0.41 UJ	870 1 U	0.18 U	647 1 U			
Vanadium	71.9	32.1	58.1	33	125			
Zinc	173	19.2	102	26.6	140			
AHs	170 1	17.4	· 104	20.0 1	140			
2-Methylnaphthalene	0.49 U		· · · · · · · · · · · · · · · · · · ·					
Acenaphthene	0.49 U	0.3 U	10 U	0.3 U	0.39 U			
Acenaphthylene	0.49 U	0.3 U	10 U	0.3 U	0.39 U			
Anthracene	0.49 U	0.3 U	10 U	0.3 U	0.39 U			
Benzo(a)anthracene	0.12 J	0.3 U	10 U	0.3 U	0.027 J			
Benzo(a)pyrene	0.13 J	0.3 U	10 U	0.3 U	0.39 U			
Benzo(b)fluoranthene	0.39 J	0.3 U	10 U	0.3 U	0.39 U			
Benzo(g,h,i)perylene	0.16 J	0.3 U	10 U	0.3 U	0.39 U			
Benzo(k)fluoranthene	0.26 J	0.3 U	10 U	0.036 U	0.3 U			
Chrysene	0.29 J ·	0.3 U	· 10 U	0.035 U	0.3 U			
Dibenzo(a,h)anthracene	0.49 U	0.3 U	U 01	0.3 U	0.39 U			
Fluoranthene	0.12 J	0.3 U	10 U	0.3 U	0.031 J			
Fluorene	0.49 U	0.3 U	10 U	0.3 U	0.39 U			
Indeno(1,2,3-cd)pyrene	0.14 J	0.3 U	10 U	0.3 U	0.39 U			
Naphthalene	0.01 U	0.3 U	10 U	0.3 U	0.39 U			
Phenanthrene	0.49 U	0.3 U	10 U	0.3 U	0.39 U			
Pyrene	0.47 U	0.3 U	10 0	0.3 U	0.041 J			

^a Results for PCBs, VOCs, and TPH not shown; all were below detection limits (see Attachment D, Table D-1).

From Technical Memorandum DS No. 12, *Background Data Summary for RMC-Troutdale* (CH2M HILL, November 22, 1996). Abbreviations and Symbols:

B = below reporting limit and above instrument detection limit.

D = compound run at a dilution to bring the concentration of that compound within the linear range of the instrument

J = estimated value

P = greater than 25% difference for detected concentrations between the two columns used for analysis

U = undetected

^{() =} advisory flag based on professional judgement rather than method protocol

above background values. Total PAHs were detected in the depression soil at a concentration of 1.7 mg/kg; the background soil values ranged from below detection limits to 0.1 mg/kg.

4.5.4 West Company Lake Soil

Five soil samples from three locations in West Company Lake were analyzed for the suite of constituents. Samples CL-SD038-0120-0, CL-SD039-0075-0, and CL-SD040-0235-0 were collected at depths where a potential process residue layer was visually identified. Sample CL-SD040-0235-0 showed no visual indication of process residue, but was collected at the approximate depth where the layer might have existed in the past, on the basis of observation of the samples. Samples CL-SD038-0150-0 and CL-SD039-0120-0 were collected below the process residue layer, in what appeared to be native sediment. A summary of analytical results is presented Table 4-10, and these results are discussed below. All the data are provided in Attachment D, Table D-3.

Cyanide. Total cyanide was detected in the process residue sample from Station CL-SD038 (7.7 mg/kg). No cyanide was detected in any other samples.

Fluoride. Fluoride by EPA Method 340.1/340.2 was detected in all samples, with the highest concentration (8,200 mg/kg) in the process residue sample from Station CL-SD038. Fluoride by Method 300.0 was detected in all samples except the sample from Station CL-SD040. The highest concentration (360 mg/kg) by this method appeared in the process residue sample from Station CL-SD038.

Total Metals. Total metal concentrations were generally higher in process residue from Station CL-SD038 than in other samples.

PAHs. Nine PAHs were detected in the process residue layer at Station CL-SD038, with a total PAH concentration of 7.59 mg/kg. No PAHs were detected in any other samples.

PCBs. Aroclor 1268 was detected at a concentration of 0.34 mg/kg in the process residue sample from Station CL-SD038. No PCBs were detected in any other samples.

TPH. Petroleum hydrocarbons were not detected in any of the samples.

VOCs. VOCs were not detected in any of the samples.

The native soils underneath the potential process layer appeared to be unaffected; no cyanide, PAHs, PCBs, TPH, or VOCs were detected, and concentrations of metals and fluoride were similar to background concentrations. Of the potential process residue samples, CL-SD038 appeared to have higher concentrations of most constituents. These CL-SD038 concentrations were at the low end, or were lower than the concentrations detected in Company Lake sediment. This finding is consistent with the belief that the primary source of higher-constituent-concentration sediment in Company Lake is solids from the air treatment system, which were discharged into Company Lake from 1975 to 1989. Because West Company Lake was filled in 1970, these higher-concentration sediments would not be present in that area. Of the three soil borings, only one showed evidence of elevated fluoride and low-level detections of PAHs and PCBs. Either the historical deposition of process residue in West Company Lake was heterogeneous in distribution or the residue was disturbed during fill activities by GS&G.

37

			Vest Company Lak		
Sample ID:	CL-SD038-0120-0	CL-SD038-0150-0	CL-SD039-0075-0	CL-SD039-0120-0	CL-SD040-0235-0
Station ID:	CL-SD038	CL-SD038	CL-SD039	CL-SD039	CL-SD040
Date Sampled:	11/26/96	11/26/96	11/26/96	11/26/96	11/27/96
Depth (ff):	12-13	15-16	7.5-9	12-13	23.5-25
Description:	Potential Process Residue	Native Sediment	Potential Process Residue	Native Sediment	Potential Process Residue
Analyte (mg/kg)*	1 Kestade 1	reality securiosis	l Kesidue	Maire seament	KUSICUU
Cyanide, Total	7.7	1 U	1 U·	10	1 ህ
Fluoride By 340.1/.2	8200 (J)	270 (J)	370 (J)	190 (J)	370 (J)
Fluoride By 300.0	360 D	5	21	9	2.5 U
Total Organic Carbon	41300	6070	12100	577	1500
otal Metals					¥
Aluminum	21500 J	6820 J	12000 J	5890 J	4810 J
Antimony	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Arsenic Barlum	4.7	1.4 28.6	3.8 85.4	1.2 26.6	0,58 33,4
Beryllium	0.5 U	0.5 U	0.5 U	20.6 0.5 U	0.5 U
Cadmlum	0.5	0.5 U	0.5 U	0.5 U	0.5 U
Calcium	11100	3340	4380	3100	2510
Chromium	49.8-	10.3	16	12	8.32
Cobalt	12.6	4.19	7.49	4.24	3.56
Copper	66.3	11.9	22.9	11.7	9.13
Iron	18700 J	10600 J	16700 J	11100 J	8370 J
Lead	21.4	5 U	14.2	5 U	50
Magneslum	3760	1440	3060	1310	1390
Manganese	194	97	232	91.1	73.6
Mercury	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	173 1390	7.78	39 986	11.8	6.69
Potassium Selenium	1390 1 U	278 1 U	980 1 U	222 1 U	271 1 U
Silver	10	10	10	10	10
Sodium	1630	719	685	613	454
Thallium	10	10	10	1 U	10
Vanadium	114	38.7	50.8	45	29.5
Zinc	90.3	24.4	76.7	22.5	24.5
PAHs					
2-Methylnaphthalene	0.52 U	0.52 U	0.43 U	0.43 U	0.43 U
Acenaphthene	0.52 U	0.52 U	0.43 U	0.43 U	0.43 U
Acenaphthylene	0.52 U	0.52 U	0.43 U	0.43 U	0.43 U
Anthracene	0.52 U 0.78	0.52 U 0.52 U	0.43 U 0.43 U	0.43 U	0.43 U
Benzo(a)anthracene Benzo(a)pyrene	0,78 0,43 J	0.52 U	0.43 U	0.43,U 0.43 U	0.43 U 0.43 U
Benzo(b)fluoranthene	0.45 3	0.52 U	0.43 U	0.43 U	0.43 U
Benzo(g,h,l)perylene	0.32 J	0.52 U	0.43 U	0.43 U	0.43 U
Benzo(k)fluoranthene	0,41 J	0.52 U	0.43 U	0.43 U	0.43 U
Chrysene	2.1	0.52 ป	0.43 U	0.43 U	0.43 U
Dibenzo(a,h)anthracene	0.52 U	0.52 U	0.43 U	0.43 U	0.43 U
Fluoranthene	1.8	0.52 U	0.43 U	0.43 U	0.43 U
Fluorene	0.52 U	0.52 U	0.43 U	0.43 U	0.43 U
Indeno(1,2,3-cd)pyrene	0.52 U	0.52 U	0.43 U	0.43 U	, 0.43 U
Naphthalene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Phenanthrene	0.21 J	0.52 U	0.43 U	0.43 U	0.43 U
Pyrene Total PAH (sum of above)	0.94	0.52 U	0.43 U	0.43 U	0.43 U
PCBs	7.59	υ	UU	U	ll u
Aroclor 1016	0.052 U	0.052 U	0.043 U	0.043 U	0.043 U
Aroclor 1221	0.1 U	0.1 U	0.088 U	0.088 U	0.088 U
Aroclor 1232	0.052 U	0.052 U	0.043 U	0.043 U	0.043 U
Aroclor 1242	0.052 U	0.052 U	0.043 U	0.043 U	0.043 U
Aroclor 1248	0.052 U	0.052 U	0.043 U	0.043 U	0.043 L
Aroclor 1254	0.052 U	0.052 U	0.043 U	0.043 U	0.043 (
Arocior 1260	0.052 U	0.052 U	0.043 U	0.043 U	0.043 U
Aroclor 1262	0.052 U	0.052 U	0.043 U	0.043 U	0.043 U
Aroclor 1268	0.34 P	0.052 U	0.043 U	0.043 U	0.043 U
PH					
TPH (HCID)	U	U	U	U	U

^{*} VOCs were analyzed but not detected (see Attachment D, Table D2).

Abbreviations and Symbols:

D = compound run at a dilution to bring the concentration of that compound within the linear range of the instrument

HCID = hydrocarbon identification

J = estimated value

P= greater than 25% difference for detected concentrations between the two columns used for analysis

U = undetected

^{() =} advisory flag based on professional judgment rather than method protocol

4.6 Dike Construction Historical Review

A historical review of the COE dike construction was performed to provide information that might be needed during remedial design, should remediation (such as dredging or cap construction) of Company Lake be necessary.

RMC's Troutdale facility and the Troutdale Airport are located within the Sandy Drainage District. COE constructed the section of the Columbia River dike that borders the Sandy Drainage District in three different phases. The dike length within the drainage district is approximately 17,300 feet. It extends from near the intersection of Interstate I-84 and the Sandy River at the east end to the boundary between the Multnomah and Sandy Drainage Districts at the west end (just west of Fairview Farms). The dike was designed to have a minimum top width of 12 feet. The designed upstream elevation of the top of the dike is 45 feet above mean sea level (MSL), and the design downstream elevation is 44 feet above MSL (46.35 and 45.35 feet NGVD, respectively). According to a 1953 COE report (COE, December 30, 1953), the 100-year flood would produce a maximum water-surface elevation of 42.2 feet above MSL (43.55 feet NGVD) on the Columbia River in the vicinity of the dike.

The three construction phases of the COE dike are described below.

4.6.1 Original Dike Construction

A major portion of the Columbia River dike in the Sandy Drainage District was originally constructed in 1915. At that time, the dike was constructed to about the height of the 1876 flood (approximately 39 feet above MSL). In the 1953 COE report, cross sections of the original dike show the dimensions and features of the dike to be very inconsistent. On the basis of these cross sections, the 1915 dike either was not constructed to any given dimensions or was changed drastically between the time it was built and the time of the survey.

From conversations with COE personnel (Jay Stergile/COE, December 2, 1996), it is unlikely that the original dike was constructed with any specifications for lift thickness or any compaction requirements. COE personnel indicated that dike construction before the 1930s to 1940s was typically performed with horse-drawn scrapers, and that the only compaction was typically that achieved as a side effect of hauling traffic.

4.6.2 Dike Improvements, 1940 to 1941

Improvements to the dike were authorized by the Flood Control Act of 1936 and were carried out in 1940 and 1941. The improvements made in 1940 and 1941 consisted of reconstructing about 2.4 miles of the dike, constructing about 1.2 miles of new dike, and constructing facilities to pass flows from the interior of the drainage system through the dike (COE, December 30, 1953).

Improvements made to the dike in 1940 and 1941 resulted in a levee with a top width of 12 feet, side slopes of 2.5H:1V (horizontal:vertical), and a top elevation ranging from 44 feet above MSL (at the downstream end) to 45 feet above MSL (at the upstream end). Analysis of soil borings advanced along the dike after the 1940-1941 improvements and before the 1953-1954 improvements indicated that the dike was constructed with a combination of alluvial sands, silts, and clays that probably came from adjacent borrow areas. The locations of the borrow areas are unknown.

39

4.6.3 Dike Improvements, 1953 to 1954

Additional improvements to the dike were authorized by the 1950 Flood Control Act. In its 1953 report, COE concluded that the existing dike had "ample elevation to prevent overflow during the design flood, but required improvements... to insure safety against seepage and possible failure" (COE, December 30, 1953). The improvements authorized in 1950 were made in 1953 and 1954. In addition to dike improvements, the construction of an approximately 5,000-foot-long cross dike was also authorized. The cross dike was constructed to the same elevation as the main dike and was located to separate the Sandy Drainage District from Multnomah County Drainage District 1.

The logs from soil borings advanced before 1953 indicated stratification of foundation and dike materials. This stratification is believed to have permitted excessive seepage during high river stages. During the 1948 flood, a number of areas behind the dike in the Sandy Drainage District were observed to seep excessively, and several of these areas required constant attention to prevent or contain boils and prevent seepage failure of the levee slope. Notes taken during the 1948 flood event indicated that extensive seepage and boiling occurred along the dike in the area from approximately 400 feet east of Company Lake to approximately 2,000 feet east of Company Lake. Subsurface explorations in these areas by COE verified the existence of sand layers with permeability factors ranging from 0.009 to 0.05 centimeter per second (cm/second).

Recommendations contained in the 1953 COE report include increasing the levee section on the land side by placing additional pervious material with flattened slopes and installing interior drains at critical seepage areas. The additional material was specified to be river sand or gravel, with a 5H:1V backslope from elevation 40 feet above MSL (41.35 feet NGVD). Additional pervious materials along the landward side of the dike were placed to provide extended seepage paths and reduce seepage pressures during floods.

The 1953 COE report also recommended placing lateral toe drains on 250-foot spacings on the landward side of the dike, from approximately 400 to 2,000 feet east of Company Lake.

Implementation of the improvements to the existing dike that were recommended in the 1953 COE report was begun in 1953 and completed in 1954; however, records of construction procedures are unavailable.

4.7 Evaluation of Potential Flood Impacts

If remedial actions are required in Company Lake, some alternatives such as capping might be affected by flooding when the water level elevations in the Columbia and Sandy River are high. This section evaluates available Columbia River stage data and modeling results to predict flood velocities that might occur in the Company Lake area under extreme flood conditions. This information might be needed during remedial design.

On a fairly regular basis during the rainy season, precipitation and snow melt temporarily elevate water levels in the Columbia River. If the river elevation is higher than the level in Company Lake, reverse flow occurs in the outfall ditch until the two water bodies are equalized. However, velocities in the outfall ditch during this equalization are low and the pond remains quiescent during the elevated period. Velocities sufficient to affect a cap in Company Lake are not likely during typical high water events in the Columbia River (that is, when there is flow reversal in the outfall ditch). Therefore, this evaluation focuses on

extreme flood events, in which overland flow from the Columbia and Sandy Rivers might affect remedial design.

4.7.1 Columbia River Stage Data

The GS&G facility is located immediately west of Company Lake. CH2M HILL installed a river stage gauge on the GS&G loading dock in July 1994. Data from the gauge for July 1994 through September 1996 are generally available; however, there are periods of varying extent for which data are not available. The available data show the Columbia River to range on average between 4 and 12 feet above MSL. During the flood of February 1996, CH2M HILL's onsite personnel visually observed a maximum flood stage of 30.15 feet on February 9 (the gauge was not operational during this period).

The closest U.S. Geological Survey (USGS) Columbia River gauge that measures daily stage data is located immediately below Bonneville Dam. This gauge (ID 14128870) was found to be too far from the site to be useful.

4.7.2 U.S. Army Corps of Engineers Water Surface Profile (HEC-2) Modeling

COE has modeled reaches along the Columbia River by using the HEC-2 Water Surface Profiles model. This model, developed and maintained by the Hydrologic Engineering Center, predicts water surface elevations that correspond to peak flows of varying recurrence intervals.

COE modeled the reach from the Willamette River to the Washougal River in 1991. Company Lake is located between Cross Sections 119.88 and 121.34, approximately at River Mile 120.2. Model results of interest include channel water surface elevations and velocities. Table 4-11 presents the water surface elevations for the model cross sections (River Miles 119.88 and 121.34) enveloping Company Lake and an interpolation for the lake at River Mile 120.2.

Table 4-11 COE HEC-2 Water Surface Elevations by Flood Recurrence Interval (Feet Above Mean Sea Level)						
River Mile Cross Section	2-Year	 10-Year	50-Year	100-Year	500-Year	
119.88*	21.02	26.06	29.63	31.13	34.60	
120.2 b	21.11	26.17	29.75	31.25	34.71	
121.34*	21.45	26.57	30.16	31.66	35.11	

b Interpolation of COE HEC-2 modeling results for Company Lake area.

On the basis of the COE HEC-2 model results, the flood-stage event of February 1996 (30.15 feet) was between a 50- and a 100-year event.

For the Columbia River or Sandy River to encroach onto the Company Lake area (other than by backflow through the outfall ditch), the river stage must exceed 23.65 feet. This is

the low point of the outfall road that forms a barrier against the rivers. According to the HEC-2 hydraulic modeling results, the Columbia River has a probability of reaching this stage on average once every 6 years (or a 16 percent chance of occurring in any given year).

4.7.3 Flood Velocities

The COE HEC-2 model predicts that the velocities shown in Table 4-12 will occur in the left overbank of Cross Section 119.88, which bisects the GS&G property.

Table 4-12 COE HEC-2 Left Overbank Velocities by Flood Recurrence Interval (Feet per Second)							
Cross Section	2-Year	10-Year	50-Year	100-Year	500-Year		
119.88 0.21 0.73 1.01 1.11 1.28							

The COE HEC-2 model uses a Manning's N (roughness coefficient) value of 0.06 in the left overbank. However, the Company Lake area is approximately two-thirds light forest and warrants a higher Manning's N value, which would result in lower velocities. In addition, the model assumes unconstrained overbank flow in the longitudinal direction (parallel to river). The GS&G facility to the west of Company Lake is situated on fill material at an elevation between 30 and 40 feet. This fill forms a barrier to flow in the longitudinal direction that would further impede velocities in the vicinity of Company Lake.

The likely scenario for flooding is that the Columbia River first would flow into Company Lake via the outfall ditch and a pool of water would begin to form in the Company Lake area. As the Columbia River rose further, it would breach the outfall road bounding Company Lake. As the river continued to rise, flow would begin to occur in a northwesterly direction from the Sandy River toward Company Lake and would exit the area generally from the location of the outfall ditch. Flow velocities probably would be less than 1 foot per second (fps), even in a 500-year event. This flow velocity (less than 1.0 fps) is reasonable given the following characteristics:

- The relatively dense vegetation on the area in the vicinity of Company Lake
- The depth of Company Lake itself
- The restrictive/pool characteristic of the inundation area

The dense vegetation provides resistance to flow passing through the inundation area adjacent to Company Lake, and thereby contributes to reduced velocities. The equation of velocity distribution indicates that under turbulent conditions, the bottom velocity in a shallow canal is larger than that in a deeper canal when the mean velocity is the same. Because scouring is caused primarily by the bottom velocity, the maximum permissible (nonscouring) velocity increases with depth of flow. Therefore, the main treatment pond area is acting as a deep channel, with less tendency for scouring of the bottom sediments. Finally, the GS&G property west of Company Lake provides a barrier perpendicular to the direction of flow during an inundation. This barrier will mitigate flow (similar to backwater behind a dam) and contribute to reduced velocities.

5 Summary of Findings

A brief summary of the results is provided below to help improve the conceptual model of the Company Lake area.

Survey of Physical Features

- The bathymetry is consistent with the previous conceptual model: the shallower western portion has a gently sloping bottom, and the deeper eastern portion has steeper bottom slopes.
- The brick along the dike shoreline is located primarily along the eastern portion of the south shore.

Aquatic Plant Survey

- There are densely rooted aquatic plants in shallow areas (less than 6 feet of water) of the pond.
- The dominant species are waterweed, curly-leaved pondweed, and eelgrass pondweed.

Company Lake Sediment

- Company Lake sediment is composed of process residue and an underlying native sediment:
 - The process residue has a consistency of very wet elastic silt throughout its vertical profile and typically exhibits a slight sheen.
 - The native sediment is composed of silt or sandy silt.
- The process residue thickness varies from 0.1 to 2.5 feet; the thickest accumulations
 occur in the western shallow portion (near the existing South Ditch inlet) and in the
 deeper eastern portion.
- Constituents detected in the process residue are consistent with permitted waste streams. The process residue contains elevated concentrations of fluoride, metals, PAHs, and TPH. Relatively low concentrations of cyanide and PCBs have been detected in some process residue samples. No VOCs have been detected in any samples.
- Concentrations of constituents detected in the underlying sediment suggest that the
 native sediment is relatively unaffected by constituents in the process residue or
 process wastewater, except for fluoride. No cyanide, PCBs, TPH, or VOCs have been
 detected, and only low concentrations of PAH have been detected in native
 sediment. Metal concentrations in native sediment are similar to background
 concentrations.

Dike Brick Soil

The brick along the COE dike appears to be an insignificant source to Company Lake sediment and surface water, or to groundwater:

43

- Results of analysis of soil samples collected within the brick along the dike have suggested that the brick may contribute low levels of fluoride, metals, and PAHs to interstitial soil, but these concentrations are significantly lower than concentrations found in Company Lake sediment.
- Concentrations in "dirty" brick directly from the bakehouse are similar to concentrations in brick soil and much lower than concentrations in Company Lake sediment, an indication that the bricks have not been a major contributor of constituents to Company Lake sediment or groundwater.

Soil in Depression East of Outfall Ditch

- Overflow from the outfall ditch into the depression east of the ditch during flooding probably has contributed low levels of constituents, including fluoride, metals, and PAHs, to the surface soil.
- No cyanide, PCBs, TPH, or VOCs have been detected in the depression soil.

West Company Lake

- Results of borings through West Company Lake indicate that the existing fill material is 8 to 24 feet deep.
- Below this fill, a potential layer of process residue, 6 to 12 inches thick, has been noted in several borings, although the layer does not appear to be composed entirely of process residue, as observed in Company Lake.
- Concentrations detected in the West Company Lake process residue (which was
 deposited from 1947 to 1970) are lower than those detected in the Company Lake
 sediment and are consistent with the belief that the primary source of constituents in
 Company Lake has been bleed streams from the carbon plant (bakehouse) air
 emission control system. These bleed streams were discharged from 1975 to 1989.
- The historical deposition of process residue in West Company Lake either was heterogeneously distributed or was disturbed during initial fill activities by GS&G.

Dike Construction Historical Review

The COE dike between the RMC facility and the Columbia and Sandy Rivers was constructed in three phases:

- Original construction was in 1915, to approximately 39 feet above MSL.
- In 1940 and 1941, dike improvements increased the top width, standardized the side slopes, and raised the top elevation to between 44 and 45 feet above MSL.
- In 1953 and 1954, additional dike improvements were made. These included
 placement of pervious material on the dike to an elevation of 40 feet above MSL and
 placement of toe drains to reduce seepage pressure during flooding and increase the
 overall dike stability.

Evaluation of Potential Flood Impacts

- Results of an evaluation of flood velocities in the Company Lake area indicate that the outfall road forms a barrier during low flood periods up to an elevation of 23.65 feet above MSL.
- Flood velocities tend to be reduced because of the existing topography and vegetation surrounding Company Lake.
- Flood velocities are predicted to be less than 1 fps, even during a 500-year event.

6 References

- CH2M HILL. *Draft Current Situation Summary*. Prepared for Reynolds Metals Company, Troutdale, Oregon. April 5, 1996.
- CH2M HILL. *Draft Sampling and Analysis Plan*. Prepared for Reynolds Metals Company, Troutdale, Oregon. May 8, 1996.
- CH2M HILL. Draft Activity-Specific Safety and Health Plan. Prepared for Reynolds Metals Company, Troutdale, Oregon. May 8, 1996.
- CH2M HILL. Company Lake Supplemental Data-Gathering Work Plan. Prepared for Reynolds Metals Company, Troutdale, Oregon. August 14, 1996.
- CH2M HILL. Technical Memorandum DS No. 12, Background Data Summary for RMC-Troutdale. Prepared for Reynolds Metals Company, Troutdale, Oregon. November 22, 1996.
- CH2M HILL. Wastewater Discharge Areas Addendum to the RI/FS Work Plan. Prepared for Reynolds Metals Company, Troutdale, Oregon. March 26, 1997.
- Jay Stergile/U.S. Army Corps of Engineers. Telephone conversation with Todd Cotten. December 2, 1996.
- U.S. Army Corps of Engineers. Design Memorandum, Sandy Drainage District, Lower Columbia River Improvement to Existing Works, Oregon and Washington. Prepared by the Department of the Army, Portland District, Corps of Engineers. Portland, Oregon. December 30, 1953.

Sediment Coring and Boring Logs

	CH2MHILL		Sediment Description L RMC Company Lake SDG Client: Reynolds Metals Company Project No		Core No.: CL-SD001 Sheet 1 of 1	
-				10/493.71.07	<u> </u>	Sileet T Of T
			CH2M HILL AMS Soft Sediment Sampler		Collection Date10/15/	/96
		•			Approximate Water Depth	
l						
-		Conector(s)	The order of the control of the cont		Cample Logger _xx vox	
	Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Com	nments
	Sedir (#)	5				
	1.0 —	Silt, (MI organic-	L), dark gray, clayey, very soft, rich, possibly process residue		- Sample CL-SD001-000	0-0
	2.0 —				Total drive = 3' Total core recovered =	= 1.2'
	3.0 —					_
	4.0 —					_
	5.0 —					_
	6.0					_
	7.0					
	8.0 — 9.0 —	The second secon		And the state of t		_
	9.0					_
	11.0					_
	12.0 —					_
j						
107493.P1.08 1	13.0 —					_

CH2	MHILL	Sediment Description L RMC Company Lake SDG	.og		Core No.: CL-SD002	
		Client: Reynolds Metals Company Project No	.: 107493.Pl.0	2	Sheet 1 of 1	
Sampling	Contractor	CH2M HILL				
	g Method	AMS Soft Sediment Sampler		Collection Date10/15/	96	
Sample l	Elevation (ft,	NGVD) 9.8		Approximate Water Depth (ft) NONE	
Sample (Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	S	
Depth Below Sediment Surface (ft)	Soil name, stri	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents	
1.0 —	<u>Silt,</u> (MI	L), medium brown, firm		Sample CL-SD002-0000-	-0	
2.0 —				• Total drive = 3.5'		
				• Total core recovered = 2	2'	
3.0						
4.0						
5.0						
6.0 —						
7.0 —						
8.0						
9.0 —						-
10.0 —					_	Approximation of the second second
11.0						-
11.0 —		,				
12.0 —			•			-
13.0 —						
10.0						,

CH2MHILL	Sediment Description I RMC Company Lake SDG Client: Reynolds Metals Company Project No.		Core No.: CL-SD003 Sheet 1_0	
Sampling Contractor	CH2M HILL			
	AMS Soft Sediment Sampler		Collection Date10/15/	96
Sample Elevation (ft,	NGVD) 13.2	<u> </u>	Approximate Water Depth (ft) 2.1
Sample Collector(s)	R. Johns, J. Tielens			
Depth Below Sediment Surface (ff) student Surface student Surface (ff) student Surface student	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
Process i	residue, dark gray, clayey, soft, organic- tht odor and sheen	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Sample CL-SD003-0000	-0
1.0			• Total drive = 2.5'	
2.0 —			Total core recovered =	1'
3.0 —				
4.0 —		A control of the cont		
5.0 —				
6.0 —				
7.0 —				
8.0 —				
9.0 —				
10.0 —				
11.0 —				
12.0 —				
13.0 —				

CH2	MHILL Sediment Description	Log		Core No.: CL-SD004				
	RMC Company Lake SDG Client: Reynolds Metals Company Project N	o.: 107493.Pl.02	2	Sheet _1_ of _1_				
Sampling	Sampling Contractor_CH2M HILL							
	Sampling Method Shovel Collection Date 10/16/96							
Sample	Elevation (ft, NGVD) 15.3		Approximate Water Depth (ft) NONE				
Sample	Collector(s) R. Johns, J. Tielens		Sample Logger _R. John	<u>s</u>				
Depth Below Sediment Surface (ft)	Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comm	ents				
	0-0.5' : Brick							
1.0 —	Silt, (ML), medium brown, firm, some fine sand		Sample CL-SD004-0000	-0 —				
2.0								
3.0								
				1				
4.0								
5.0 —								
6.0								
7.0 —				_				
1								
8.0 —								
				!				
9.0 —				_				
10.0 —								
11.0 —								
12.0				_				
13.0 —	1			_				

CH2M	IHILL Sediment Description RMC Company Lake SDG Client: Reynolds Metals Company Project N			Core No.: CL-SD005 Sheet 1 of 1
Sampling C	Contractor Advanced American Diving			7
Sampling M	0 1 0 10		Collection Date10/19/9	6
	12.6			
Depth Below Sediment Surface (ft)	Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comm	ents ·
1.0	Top 0.5': Process residue/organic matter, black, slight sheen; small (1/16") metallic pieces in sample Bottom: Silt, (ML), gray, some fine-grained sand, some clay, slightly moist, firm	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Sample CL-SD005-0000-	
3.0 —				
4.0			 Total drive = 4' Total core recovered = 3	3.2'
5.0				
6.0				
7.0				
8.0 —				
9.0				
10.0				
12.0 —				
13.0				

	RMC Company Lake SDG Client: Reynolds Metals Company Project No	o.: 107493.Pl.0	2	CL-SD006 Sheet _1_ of _1_				
Sampling	Contractor_ Advanced American Diving							
l	Sampling Method Ogeechee Sand Corer Collection Date 10/19/96							
Sample l	Elevation (ft, NGVD) 10.3		Approximate Water Depth (ft) 4.9				
Sample (Collector(s) R. Johns, J. Tielens		Sample Logger R. John	S				
Depth Below Sediment Surface (ft)	Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comm	ents				
1.0	Top 2': Organic matter/process residue (?), black, silty, wet, very soft, slight sheen		- Sample CL-SD006-0000	-0 —				
3.0 —	2'-4': Silt with sand, (ML), brown, slightly moist, medium-grained sand 3.3'-3.6': Poorly graded sand, (SP), medium-grained, brown, medium dense		Sample CL-SD006-0020	-0				
4.0 —		TELLI.						
			 Total drive = 5' Total core recovered = - 	<u>4</u> '				
5.0 —	·		Total colo locovered =					
6.0 —				_				
7.0 —				_				
8.0				_				
9.0 —				_				
10.0								
11.0 —				_				
12.0 —								
13.0								

Core No.:

Core No.: CH2MHILL **Sediment Description Log** CL-SD007 RMC Company Lake SDG Client: Reynolds Metals Company Project No.: 107493.Pl.02 Sheet _1_ of _1_ Sampling Contractor Advanced American Diving Collection Date _10/19/96 Ogeechee Sand Corer Sampling Method Approximate Water Depth (ft) __12.0 Sample Elevation (ft, NGVD) 3.2 Sample Collector(s) R. Johns, J. Tielens Sample Logger R. Johns Depth Below Sediment Surface (ft) **Sediment Description** Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol Symbol Comments Top 1': Organic matter/process residue (?), black, Sample CL-SD007-0000-0 clayey, very soft, odor, sheen 1'-1.1': Poorly graded sand, (SP), medium gray, 1.0 medium grained Silt with sand, (ML), light/medium greenish gray, 2.0 Sample CL-SD007-0015-0 slightly moist, fine to medium-grained sand 3.0 -4.0 -• Total drive = 5' 5.0 -• Total core recovered = 4.5' 6.0 -7.0 -8.0 9.0 -10.0 -11.0 12.0 -13.0 -

CH2	MHILL Sediment Description RMC Company Lake SDG	Log		CL-SD008
	Client: Reynolds Metals Company Project N	o.: 107493.PI.02		Sheet _1 of _1
Sampling	g Contractor Advanced American Diving			
Sampling	g Method Ogeechee Sand Corer		_ Collection Date _10/19/9	96
Sample	Elevation (ft, NGVD) 7.5			
i .	Collector(s) R. Johns, J. Tielens			
		T		
Depth Below Sediment Surface (ft)	Sediment Description			
th Bel	Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comn	nents
98£ €				
	Top 0.1': Process residue/organic matter, black,		No top sample taken	
1.0 —	very wet		l	_
	Silt, (ML), gray, slightly moist, firm, trace fine-grained sand		Sample CL-SD008-0010	i-O
2.0			, <u>,</u>	_
3.0				_
0.0				_
4.0				
4.0				_
5.0			• Total drive = 5'	
J.U			• Total core recovered =	4.5'
6.0 —				
0.0 —				_
7.0				
7.0 —				_
0.0				
8.0 —				-
9.0				-
10.0 —				-
11.0 —				-
12.0 —				-
13.0 —				-
-				
L		1		

CH2N	WHILL	Sediment Description RMC Company Lake SDG Client: Reynolds Metals Company		02	Core No.: CL-SD009 Sheet _1 of _1
Sampling	Contractor	Advanced American Diving			
Sampling	Method	Ogeechee Sand Corer		Collection Date _10/19	/96
Sample E	levation (ft,	NGVD) 3.1		Approximate Water Dept	h (ft) 12.1
Sample C	Collector(s)	R. Johns, J. Tielens		Sample Logger R. Jo	hns
rface					
Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative ucture ASTM D 2488 classification symbol	density, Symbol	Col	nments
1.0 —	Top 1.1'	: Process residue/organic matter, silty, very soft, slight odor, sligh	black, t sheen	Sample CL-SD009-00	0-0-0
2.0 —	Silt with	sand, (ML), gray/greenish gray, moist, firm		Sample CL-SD009-00	20-0
3.0		,			
4.0				• Total drive = 5'	
5.0				Total core recovered	= 4'
0.0					
6.0 —					
7.0 —					
8.0 —					
9.0 —					
10.0					
11.0					
12.0			•	,	

CH2	MHILL Sediment Description I RMC Company Lake SDG		CL-SD010						
	Client: Reynolds Metals Company Project No	o.: 107493.Pl.02	2	Sheet <u>1</u> of <u>1</u>					
Sampling	Sampling Contractor_Advanced American Diving								
			Collection Date _10/19/9)6					
Sample l			Approximate Water Depth						
	* · · · · · · · · · · · · · · · · · · ·								
<u>e</u>									
Depth Below Sediment Surface (ft)	Sediment Description								
th Bel iment	Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comm	nents					
Sed (#)									
	Top 2': Process residue/organic matter, silty, black, very soft, odor, sheen	}}}}}							
1.0	very soit, odor, sneen	$ \rangle\rangle\rangle\rangle\rangle $	- Sample CL-SD010-0000	-0					
		[{{{{{}}}	-						
2.0		11111							
	Deserve and desert (CD) horses are disconnected								
3.0 —	Poorly graded sand, (SP), brown, medium grained								
0.0	Silt, (ML), somewhat sandy, gray, slightly moist,		Sample CL-SD010-0030	i-0					
4.0 —	firm								
4.0									
5.0 —			• Total drive = 5'						
0.0 -			• Total core recovered =	4.5'					
6.0 —									
0.0									
7.0									
7.0 —									
8.0 —									
9.0 —									
				,					
10.0 —									
11.0									
12.0 —				-					
13.0				-					
1		1							

СН	2MHILL	Sediment Description Log RMC Company Lake SDG Client: Reynolds Metals Company Project No.: 107493.Pl.02			Core No.: CL-SD011 Sheet _1 of _1
Samp	ling Contractor	Advanced American Diving			
- 1		Ogeechee Sand Corer			5
Samp	le Elevation (ft,	NGVD) 12.1		Approximate Water Depth (f	t) 3.2
Samp	le Collector(s)	R. Johns, J. Tielens		Sample Logger _R. Johns	3
Depth Below Sediment Surface (#)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0 -	1'-1.1':	Process residue/organic matter, black, silty, very soft Poorly graded sand, (SP), brown, medium dense, medium-grained sand		Sample CL-SD011-0000-	0
3.0		ilt, (ML), brown, fine-grained sand, firm		- Sample CL-SD011-0020-	0 -
4.0				• Total drive = 5'	
5.0				• Total core recovered =	4' –
6.0	_				_
7.0					_
8.0					_
9.0					_
10.0					· <u></u>
11.0					_
12.0					_
13.0					

CH2	MHILL Sediment Description RMC Company Lake SDG	Log	Core No	
	Client: Reynolds Metals Company Project No	o.: 107493.Pl.02	Sheet _	1_of_1_
Sampling	G Contractor Advanced American Diving			
			Collection Date10/19/96	
Sample l			Approximate Water Depth (ft) 3.7	
Sample				
Depth Below Sediment Surface (ft)	Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comments	
1.0 —	Top 6": Organic matter/process residue, black, silty, very soft, slight sheen	\$\$\$\$\$\$	Sample CL-SD012-0000-0	_
2.0	Sandy silt, (ML), brown, slightly moist, medium dense, medium grained		Sample CL-SD012-0015-0	-
3.0				
4.0 —			• Total drive = 5'	
5.0 —			• Total core recovered = 4'	
6.0				
7.0 —				<u>-</u>
8.0 —				
9.0 —				
10.0 —				
11.0 —				
,				
13.0				
	<u> </u>	1		

CH2MHILL		Sediment Description RMC Company Lake SDG Client: Reynolds Metals Company Project No.			Core No.: CL-SD013 Sheet _1 of _1
Sampling (Contractor	Advanced American Diving			
Sampling !		Ogeechee Sand Corer			5
, -		NGVD) 0.7			
				Sample Logger R. John	
-	Ollector(3)			Cample Logger	
Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0 —	Top1':	Organic matter/process residue, black, very soft		Sample CL-SD013-0000	0
2.0 —				Sample CL-SD013-0025	0
3.0 —	Silt, (MI	L), gray-green, very soft		Sample CL-SD013-0023-	o .
4.0					
5.0 —				• Total drive = 5'	
				• Total core recovered =	4.5'
6.0					
7.0					
8.0 —					
9.0 —				·	
10.0					
11.0 —					
12.0 —					
13.0 —					

CH2MH	HILL Sediment Description RMC Company Lake SDG	Log	Core No.: CL-SD014
	Client: Reynolds Metals Company Projec	t No.: 107493.Pl.02	Sheet 1 of 1
Sampling Cor	ntractor Advanced American Diving		
Sampling Mel	thod Ogeechee Sand Corer		Collection Date
Sample Eleva	ation (ft, NGVD) 4.5		Approximate Water Depth (ft)
			Sample Logger R. Johns
urfac	Sediment Description		
Belo So	il name, color, grain size, moisture content, relative densit structure ASTM D 2488 classification symbol	y, Symbol	Comments
Depth Below Sediment Surface (ft)	STRUCTURE AS FIM D 2400 Classification symbol		
	Top 4": Organic matter/process residue, black,	(((((Sample CL-SD014-0000-0
1	very soft	' { { { { { { { { { { { { { { 1}} } } } }	Sample CE-5B014-0000-0
1.0			_
В	ottom: Silt, (ML), gray, soft		Sample CL-SD014-0015-0
2.0			Sample CL-3D014-0013-0
3.0			
-			
4.0			• Total drive = 5'
1			• Total core recovered = 3.5'
5.0			
6.0			
7.0			
7.0			
8.0 —			
		L. C.	
9.0			
10.0		a gagaga debekan kan ana ana ana ana ana ana ana ana	
-			
11.0		-	
**		- Annual Control of the Control of t	
12.0			
WOODING STEELS COMMISSION			
13.0			
Vandomina and State of State o			

CH2I	RMC Company Lake SDG Client: Reynolds Metals Company Project No.		Core No.: CL-SD015 Sheet 1 of 1
Sampling	Contractor Advanced American Diving		
Sampling		****	Collection Date 10/20/96
Sample E	Elevation (ft, NGVD) 7.6		
	D. I1 I TV-1		D. T.L
Depth Below Sediment Surface (ft)	Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comments
1.0 —	Top 1"-2": Process residue (?), black, very soft, no odor or sheen Bottom: Silt, (ML), green/gray, firm, slightly moist, slightly sandy, fine		No sample collected - CL-SD015-0010-0
2.0			
3.0 —			 Total drive = 3' Total core recovered = 2.5'
4.0 —			
5.0 —			
6.0 —			
7.0			
8.0			
9.0 —			
10.0 —			
11.0 —			
12.0 —			
13.0 —			

CH2	MHILL	Sediment Description RMC Company Lake SDG	Log		Core No.: CL-SD016
		Client: Reynolds Metals Company Project No	o.: 107493.PI.02	2	Sheet 1 of 1
Samplin	g Contractor	Advanced American Diving			
Samplin	g Method	Ogeechee Sand Corer	····	Collection Date10/20/9	6
Sample	Elevation (ft,	NGVD) <u>-0.2</u>		Approximate Water Depth (ft) 15.4
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	S
Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0 —	3"-6":	Process residue/organic material, black, very soft Poorly graded sand, (SP), medium to fine grained, brown L), brown/gray, slightly sandy, firm	\$\$\$\$\$\$	CL-SD016-0000-0	
3.0 —				• Total drive = 5'	
4.0				• Total core recovered =	3'
5.0					_
6.0					
7.0					_
8.0 —					
9.0 —					
10.0					
11.0					
12.0 —					_
13.0 —					_

CH2	MHILL	Sediment Description I RMC Company Lake SDG Client: Reynolds Metals Company Project No		2	Core No.: CL-SD017 Sheet _1 of _1_
Sampling	Contractor	Advanced American Diving			
	g Method	Ogeechee Sand Corer		Collection Date	5
1	-	NGVD) _10.4			
1					
Depth Below Sediment Surface (ft)	Soil name, str	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
	Top 1/2"	: Possible process residue (?), gray, soft, no odor or sheen, may be just organic		-CL-SD017-0000-0	
1.0 —	1/2" – 1'	matter Poorly graded sand, (SP), silty, brown, loose, medium grained			-
2.0 —	Sandy si	lt, (ML), brown, fine grained, firm		- CL-SD017-0015-0	-
3.0					-
4.0 —				 Total drive = 5' Total core recovered = 3	3.5'
5.0 —					_
6.0 —					
7.0 —					
8.0	_				
9.0 —					
10.0 —					
10.0 —		•			
11.0 —					-
12.0	and the second s				
12.0					•
13.0 —					

CH2	MHILL	Sediment Description L	_og		Core No.: CL-SD021			
		RMC Company Lake SDG Client: Reynolds Metals Company Project No).: 107493.Pl.02	2	Sheet 1 of 1			
Samplin	Sampling Contractor_ Advanced American Diving							
Samplin	g Method	Ogeechee Sand Corer		Collection Date10/20/9	6			
Sample	Elevation (ft	, NGVD) 10.5		Approximate Water Depth (ft) 4.7			
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	S			
Depth Below Sediment Surface (ft)	Soil name, str	Sediment Description color, grain size, moisture content, relative density, ructure ASTM D 2488 classification symbol	Symbol	Comm	ents			
1.0 —	Top 1.5'	: Process residue, black, very soft, sheen, strong odor		- CL-SD021-0000-0				
3.0 —	Silt, (M)	L), brown, soft, slightly sandy		- CL-SD021-0020-0				
4.0 —				Total drive = 5' Total core recovered = 2	3.5'			
5.0 —	1							
6.0 —								
7.0 —	1							
8.0 —	1							
9.0	-							
10.0 —								
12.0 —					_			
13.0 —					_			

	CH2	MIHILL	Sediment Description RMC Company Lake SDG Client: Reynolds Metals Company Project No			Core No.: CL-SD018 Sheet _1 of _1
	0 !	•	Advanced American Diving	5 107435.1 1.02		Sileet I OI I
	Sampling				Collection Date10/20/96	
			NGVD) 12.9			
			75		T T 1	
		Jonector(s)	IX. JOHNS, J. HOPOING	T	Sample Logger 11. John	3
	Depth Below Sediment Surface (ft)	Soil name, str	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comme	ents
	1.0 —	Top 1.5'	: Process residue/organic matter, dark gray, soft, silty, appears to be either a gray silt or residue, wood fragments in sample		CL-SD018-0000-0	
	2.0	Sandy si fine-grai	lt, (ML), brown, soft to firm, ned		- CL-SD018-0020-0	, -
	4.0 —				• Total drive = 5'	
					• Total core recovered = 4	4 '
	5.0					
	6.0 —					_
	7.0					_
	8.0					_
	9.0					_
	3.0					
	100					
	10.0 —					-
	11.0					_
	12.0 —					-
8						
107493.P1.08 11/9	13.0 —		•			_
493.P1						
107						

CH2	MHILL	Sediment Description	_og		Core No.: CL-SD019
		RMC Company Lake SDG Client: Reynolds Metals Company Project No.	o.: 107493.PI.0	2	Sheet 1 of 1
Sampling	g Contractor	Advanced American Diving			
1	g Method			Collection Date	6
Sample	Elevation (ft,	NGVD) <u>6.4</u>		Approximate Water Depth ((ft) 8.8
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	S
Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0	Top 2' :	Possible process residue, dark gray, silty, very soft		- CL-SD019-0000-0	
3.0 —	Silt with	sand, (ML), brown, fine grained, firm		- CL-SD019-0030-0	
4.0 —				• Total drive = 5'	
5.0				• Total core recovered =	4'
6.0 —					
7.0 —					
8.0 —					
9.0 —					·
10.0 —	The state of the s				_
11.0 —					
12.0 —	Andrews and the second				
13.0 —					

CH2I	WHILL Sediment Description I RMC Company Lake SDG Client: Reynolds Metals Company Project No			Core No.: CL-SD020 Sheet _1 of _1		
0				Sheet 1 01 1		
		<u> </u>		۲		
Sampling		Collection Date 10/20/96				
				Approximate Water Depth (ft) 5.9		
Sample 0	Collector(s) R. Johns, J. Tielens		Sample Logger _R. John	<u>S</u>		
Depth Below Sediment Surface (ft)	Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	Symbol	Comm	ents		
<u>a</u> 88€						
1.0 —	Top 2': Possible process residue, dark gray, silty, very soft		- CL-SD020-0000-0			
2.0 —						
3.0 —	Silt, (ML), brown, slightly sandy, fine grained, firm		- CL-SD020-0025-0			
4.0						
	•		• Total drive = 5'	A1		
5.0			• Total core recovered =	4		
6.0 —						
0.0						
7.0 —	•					
7.0						
0.0						
8.0 —			•			
9.0 —						
10.0						
11.0						
12.0						
13.0 —						

CH2		Sediment Description L RMC Company Lake SDG	_og		CL-SD022		
		Client: Reynolds Metals Company Project No	.: 107493.Pl.02	2	Sheet <u>1</u> of <u>1</u>		
Sampling	g Contractor	Advanced American Diving					
		Ogeechee Sand Corer		Collection Date	Collection Date 10/20/96		
Sample !	Elevation (ft, N	GVD) <u>8.7</u>		Approximate Water Depth	Approximate Water Depth (ft) 6.5		
æ							
Depth Below Sediment Surface (ft)	Soil name, co	Sediment Description lor, grain size, moisture content, relative density, ture ASTM D 2488 classification symbol	Symbol	Сотп	nents		
ağ£							
1.0 —	Top 2.5' : 1	Process residue, black, very soft, odor, sheen		- CL-SD022-0000-0			
2.0 —							
3.0 —	Silty sand medium de	to sandy silt, (SM to ML), brown, ense, slightly clayey		CL-SD022-0030-0			
4.0 —							
5.0				• Total drive = 5'			
				• Total core recovered =	4.5'		
6.0 —							
7.0							
8.0 —							
9.0 —	Salara de la companya						
10.0							
11.0 —							
12.0 —							
13.0 —	and the same of th						
	S-P-Action and Printers and Pri						

ı

CH2MHILL		RMC Company Lake SDG Client: Reynolds Metals Company Project No.: 107493.Pl.02			Core No.: CL-SD023 Sheet 1 of 1	
Sampling	Contractor	Advanced American Diving				
	g Method				Collection Date 10/20/96	
Sample i	Elevation (ft,				Approximate Water Depth (ft) 2.3	
			79			
Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ructure ASTM D 2488 classification symbol	Symbol	Comm	ents	
1.0	Top 1':	Process residue, black, very soft, sheen		- CL-SD023-0000-0	-	
2.0 —	Sandy s	ilt, (ML), brown, firm, fine-grained		- CL-SD023-0015-0	-	
3.0 —				-	-	
4.0	4.2' : Si	lty sand, (SM), brown, medium dense			-	
5.0 —	-			 Total drive = 5' Total core recovered =	4.5'	
6.0						
7.0 —						
8.0						
9.0						
10.0 —						
11.0 —						
12.0 —	-					
13.0 —						
201						

CH2	MHILL	Sediment Description RMC Company Lake SDG	ı Log		CL-SD024
		Client: Reynolds Metals Company Projec	t No.: 107493.Pl.02	2	Sheet 1 of 1
Samplin	g Contractor	Advanced American Diving			
				Collection Date10/20/9	96
Sample	Elevation (ft,			Approximate Water Depth	I
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	ns
Depth Below Sediment Surface (ft)	Soil name, str	Sediment Description color, grain size, moisture content, relative densiture ASTM D 2488 classification symbol	y, Symbol	Come	nents
1.0 —	Top 1':	Process residue, black, sheen, odor	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- CL-SD024-0000-0	
2.0 — 3.0 —	Silt, (MI	L), brown/gray, firm		- CL-SD024-0015-0	_
4.0				 Total drive = 5' Total core recovered =	3.5'
5.0 —				,	_
6.0 —					
7.0					
8.0					_
9.0 —					
10.0 —					
11.0 —	The second secon				_
12.0					
13.0 —					_

CH2MHILL	Sediment Description RMC Company Lake SDG Client: Reynolds Metals Company Project No.			Core No.: CL-SD025 Sheet 1 of 1
Sampling Contractor	Advanced American Diving			
Sampling Method	Ogeechee Sand Corer		Collection Date	5
Sample Elevation (ft,	NGVD) 12.3		Approximate Water Depth (
			Sample Logger R. John	
Sediment Surface (ft) Surface (tt) Surface (tt)	Sediment Description color, grain size, moisture content, relative density, icture ASTM D 2488 classification symbol	Symbol	Comm	ents
Top 0.8'	: Process residue, black, very soft, sheen	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- CL-SD025-0000-0	
2.0 — Silt, (ML	.), brown/gray, firm		- CL-SD025-0010-0	
3.0			• Total drive = 5'	
4.0			• Total core recovered =3)
5.0 —				
6.0 —				
7.0 —				
8.0 —				
9.0 —				
10.0 —				
11.0 —				
12.0 —				
13.0 —				

CH2	MHILL	Sediment Description RMC Company Lake SDG	Log		Core No.: CL-SD026
		Client: Reynolds Metals Company Project N	o.: 107493.Pl.02	2	Sheet _1_ of _1_
Samplin	g Contractor	Advanced American Diving			
	g Method			Collection Date _10/20/9	6
Sample	Elevation (ft	, NGVD) 13.3		Approximate Water Depth (ft) 1.9
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	S
w Surface		Sediment Description			"
Depth Below Sediment Surface (ft)	Soil name, str	color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0	Top 1.5'	: Process residue/organic material, black, very soft, sheen		- CL-SD026-0000-0	_
2.0	Silt, (MI	L), brown, firm		- CL-SD026-0020-0	_
3.0 —					
4.0				 Total drive = 5' Total core recovered = 3 	3.5' ÷
5.0 —	-				_
6.0 —					-
7.0	-				-
8.0 —	_				_
9.0 —	_				_
10.0 —					_
11.0 —					-
12.0 —					-
13.0					-
				,	

CH2I	MHILL	Sediment Description RMC Company Lake SDG			Core No.: CL-SD027
		Client: Reynolds Metals Company Project N	o.: 107493.Pl.02		Sheet 1 of 1
Sampling	Contractor	Advanced American Diving			
Sampling	Method	Ogeechee Sand Corer		Collection Date	5
		NGVD) <u>11.1</u>		Approximate Water Depth (1	t) <u>4.1</u>
Sample 0	Collector(s)	R. Johns, J. Tielens		Sample Logger <u>R. John</u>	3
Depth Below Sediment Surface (ft)	Soil name, str	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0	Top 2.5'	: Process residue, black, clayey/silty, very soft, sheen		- CL-SD027-0000-0	
2.0 —					
3.0	Silt, (Mi slightly	L), medium brown, firm, sandy			
4.0	Poorly g dense, n	raded sand, (SP), brown, medium nedium grained		CL-SD027-0038-0	
5.0 —				• Total drive = 5'	
				• Total core recovered = :	5'
6.0 —					
7.0 —		•			
	,				
8.0 —					
9.0 —					
10.0 —					
11.0 —					
12.0 —					
13.0 —					

CH2	MHILL	Sediment Description RMC Company Lake SDG	Log		Core No.: CL-SD028				
		Client: Reynolds Metals Company Project N	o.: 107493.Pl.02		Sheet <u>1</u> of <u>1</u>				
Sampling	Sampling Contractor_Advanced American Diving								
Sampling	Sampling Method Ogeechee Sand Corer Collection Date 10/20/96								
Sample	Elevation (ft,	NGVD) <u>9.2</u>		Approximate Water Dept	h (ft)				
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. Jol	nns				
Depth Below Sediment Surface (ft)	Soll name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Con	nments				
1.0 —	Top 2.5'	: Process residue, black, very soft, silty to clayey, sheen, odor		CL-SD028-0000-0 and duplicate CL-SD028-0000-1					
2.0 — 3.0 —	Sandy si	lt, (ML), brown/green, firm,		_					
4.0	4' 4.5'	: Poorly graded sand, (SP), brown,		- CL-SD028-0030-0 and duplicate CL-SD028-0030-1					
5.0 —		medium dense, medium grained							
6.0 —				 Total drive = 5' Total core recovered	= 5'				
7.0									
8.0					_				
9.0 —									
10.0 —	Vicania A. Anni marini marini vicani								
11.0									
12.0	-								
13.0									

	CH2MHILL		Sediment Description RMC Company Lake SDG			Core No.: CL-SD029	
			Client: Reynolds Metals Company Project	2	Sheet <u>1</u> of <u>1</u>		
			Advanced American Diving		,		
	, ,	g Method					
					Approximate Water Depth (
		Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	S	
	Depth Below Sodiment Sourface (#) Soli name, color, color, color structure		Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents	
	1.0 —	Top 1.5'	: Process residue, black, silty, very soft, very strong petroleum odor, sheen	\$\$\$\$\$\$\$	- CL-SD029-0000-0	_	
	2.0	Silty sand, (SM), brown, fine, medium dense			- CL-SD029-0020-0		
	3.0 —						
	4.0 —				• Total drive = 5'	_	
)					• Total core recovered =	3. 3	
	5.0						
	6.0						
	7.0 —						
	0.0						
	8.0					_	
	9.0	The second secon				_	
	10.0						
	11.0	_				_	
	12.0 —	4					
2							
3 11/5	13.0 —					_	
107493,P1.08 11/5.				,			
107490							

CH2	MHILL Sediment Description Log RMC Company Lake SDG	Core No.: CL-SD030						
	Client: Reynolds Metals Company Project No.: 107493	.Pl.02 Sheet <u>1</u> of <u>1</u>						
Samplin	Sampling Contractor Advanced American Diving							
Samplin	Method Ogeechee Sand Corer	Collection Date						
Sample		Approximate Water Depth (ft) 3.2						
Sample	Collector(s) R. Johns, J. Tielens	Sample Logger R. Johns						
Depth Below Sediment Surface (ft)	Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	ol Comments						
Sedi (£)								
1.0	Top 2': Process residue, black, clayey, sheen	CL-SD030-0000-0						
2.0 —	2'-3.5': Sandy silt, (ML), brown, fine, firm							
4.0	3.5': Poorly graded sand, (SP), fine to medium grained, brown, medium dense	CL-SD030-0030-0						
		• Total drive = 5'						
5.0		• Total core recovered = 4.5'						
6.0 —		_						
7.0 —		_						
8.0 —		_						
9.0 —								
10.0 —		_						
11.0 —								
12.0 —								
13.0 —								
F								

CH2I	MHILL Sediment Description RMC Company Lake SDG Client: Reynolds Metals Company Project No.			Core No.: CL-SD031 Sheet 1 of 1
Complie	Contractor Advanced American Diving			OlicetOI
				6
	Method Ogeechee Sand Corer Elevation (ft, NGVD) 8.7			
	Collector(s) R. Johns, J. Tielens		Sample Logger <u>R. John</u>	8
Depth Below Sediment Surface (ft)				
E Su	Sediment Description Soil name, color, grain size, moisture content, relative density.	Symbol	Comm	ents
dime (Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol	J,2.		
3%E		1////		
	Top 2.5': Process residue, black, clayey, sheen			
1.0	,		CL-SD031-0000-0	
](((((()))		
2.0 —	,	1(((((\	<u>\$</u>	
2.0		1((((((
0.0				
3.0 —	Cit. Off.) Language			
	Silt, (ML), brown, soft			
4.0 —			- CL-SD031-0035-0	
5.0			• Total drive = 5'	
	•		• Total core recovered =	5'
6.0				
7.0				
8.0 —				
0.0				
9.0				
10.0				
11.0 —				
12.0 —				
13.0 —				
10.0				
			•	

U 1 141	MHILL	Sediment Description RMC Company Lake SDG	Log		CL-SD032
		Client: Reynolds Metals Company Project	No.: 107493.P1.02		Sheet <u>1</u> of <u>1</u>
Sampling	g Contractor	Advanced American Diving			
Sampling	g Method	Ogeechee Sand Corer		Collection Date10/21/9	6
Sample E	Elevation (ft,	NGVD) 10.6	· · · · · · · · · · · · · · · · · · ·	Approximate Water Depth (ft) 4.6
Sample (Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	<u>s</u>
Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0 —	Top 2':	Process residue, black, clayey, very soft, sheen		- CL-SD032-0000-0	_
3.0 —		L), brown, soft, trace fine sand		CL-SD032-0030-0	
4.0 —	me	edium grained, medium dense			
5.0 —				 Total drive = 5' Total core recovered =	4'
6.0					
7.0 —	A commence of the contract of				
8.0					
9.0 —					
10.0					
11.0 —					
12.0 —	· Commence of the commence of				

CH2MHILL		Sediment Description	_og		Core No.: CL-SD033
		RMC Company Lake SDG Client: Reynolds Metals Company Project No	o.: 107493.Pl.02	2	Sheet 1 of 1
Samplin	ng Contractor	Advanced American Diving			
Samplin	ng Method	Ogeechee Sand Corer		Collection Date	6
Sample	Elevation (ft.	NGVD) 12.3		Approximate Water Depth ((ft) <u>2.9</u>
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	S
92					
low t Surfa		Sediment Description			
Depth Below Sediment Surface (ft)	Soil name, str	color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
	Top 1.3'	: Process residue, black, soft, silty,	555555	Gr. grane cone o	
1.0		sheen	}}}}	- CL-SD033-0000-0	
1.0				,	
2.0 —					
	Silt, (MI	L), brown, firm, little to no fine sand			
3.0 —	_			CL-SD033-0025-0	
4.0 —					
				• Total drive = 5'	
5.0 —	-			• Total core recovered =	4'
6.0 —	4				_
7.0 —	-				
8.0 —	-				-
9.0 —	-				
10.0 —	_				_
11.0 —	_				_
12.0 —	1				_
07493.P1.08 11/897.C					
13.0 —	1				
07493.1					

CH2	MHILL	Sediment Description RMC Company Lake SDG	Log		Core No.: CL-SD034
		Client: Reynolds Metals Company Project N	lo.: 107493.Pl.02	:	Sheet <u>1</u> of <u>1</u>
Sampling	g Contractor_	Advanced American Diving			
Sampling	g Method ,	Ogeechee Sand Corer		Collection Date10/21/9	6
Sample	Elevation (ft,	NGVD) <u>12.4</u>		Approximate Water Depth (ft) _2.8
Sample	Collector(s)	R. Johns, J. Tielens		Sample Logger R. John	8
Depth Below Sediment Surface (ft)	Soil name, o	Sediment Description color, grain size, moisture content, relative density, acture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0 —	Top 1.5'	Process residue, black, clayey, sheen	\$\$\$\$\$\$ \$\$\$\$\$\$ 11111111	- CL-SD034-0000-0	
2.0 —	Silt, (ML	.), greenish brown, very soft		CL-SD034-0020-0	-
4.0				 Total drive = 5' Total core recovered = 1 	3.5'
5.0 —					-
6.0 —	- Compression of the Compression				-
7.0 —		•			-
8.0 —	with the control of t			•	-
9.0					
10.0 —					
11.0 —					
12.0 —					
13.0 —					,

CH2N	MHILL	Sediment Description RMC Company Lake SDG Client: Reynolds Metals Company Project N	,	2	Core No.: CL-SD035 Sheet 1 of 1
Sampling (Contractor	Advanced American Diving			
Sampling I		Ogeechee Sand Corer		Collection Date	5
Sample El	evation (ft,	NGVD) <u>11.3</u>		Approximate Water Depth (it) 3.9
Sample Co	ollector(s)	R. Johns, J. Tielens		Sample Logger _R. John	<u>s</u>
Depth Below Sediment Surface (ft)	Soil name,	Sediment Description color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
1.0 —	Top 2':	Process residue, black, very soft, clayey, sheen		- CL-SD035-0000-0	-
3.0	Silt, (MI	L), brown, very soft		- CL-SD035-0030-0	
4.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
5.0 —				 Total drive = 5' Total core recovered = - 	4'
6.0 —					
7.0 —					
8.0 —					
9.0					
10.0					
11.0 —					
12.0					
13.0					-

RMC Company Lake SDG Client: Reynolds Metals Company Project No.: 107493.Pl.02 Sampling Contractor Advanced American Diving Sampling Method Ogeechee Sand Corer Collection Date 10/21/96 Sample Elevation (ft, NGVD) 9.2 Approximate Water Depth (ft) Sample Collector(s) R. Johns, J. Tielens Sample Logger R. Johns Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol Top 2': Process residue, black, clayey, very soft, sheen Comments	
Sampling Method Ogeechee Sand Corer Sample Elevation (ft, NGVD) 9.2 Sample Collector(s) R. Johns, J. Tielens Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol Top 2': Process residue, black, clayey, very Collection Date 10/21/96 Approximate Water Depth (ft) Sample Logger R. Johns Comments	
Sample Elevation (ft, NGVD) 9.2 Sample Collector(s) R. Johns, J. Tielens Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol Top 2': Process residue, black, clayey, very	
Sample Collector(s) R. Johns, J. Tielens Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol Top 2': Process residue, black, clayey, very	
Sediment Description Soil name, color, grain size, moisture content, relative density, structure ASTM D 2488 classification symbol Top 2': Process residue, black, clayey, very	S
Top 2': Process residue, black, clayey, very	S
Top 2': Process residue, black, clayey, very	· · · · · · · · · · · · · · · · · · ·
	_
3.0 — Silt, (ML), brown, very soft, slightly clayey	
4.0 — 4.5': Poorly graded sand, (SP), brown, fine, medium dense — CL-SD036-0035-0	
• Total drive = 5'	
• Total core recovered = 5'	
7.0 —	
8.0 —	_
9.0 —	
10.0 —	
11.0	
12.0 —	
13.0 —	_

CMZIVINILL	RMC Company Lake SDG Client: Reynolds Metals Company Project No.	· · · · · · · · · · · · · · · · · · ·		Core No.: CL-SD037 Sheet 1 of 1
Sampling Contractor	Advanced American Diving			
	Ogeechee Sand Corer		Collection Date10/21/9	5
Sample Elevation (ft			Approximate Water Depth (
	R. Johns, J. Tielens			
9				
Surfa	Sediment Description		,	
Sediment Surface Sediment Surface (tt) Soil name, str	color, grain size, moisture content, relative density, ucture ASTM D 2488 classification symbol	Symbol	Comm	ents
	:Process residue, black, very soft, sheen	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- CL-SD037-0000-0	
1.0 —		}}}}}		
2.0 —		\\\\\		
3.0				
Silt, (M	L), brown, fine grained, firm			
4.0 —			CL-SD037-0035-0	
5.0			• Total drive = 5'	
			• Total core recovered =	5'
6.0 —				
7.0 —				
8.0 —				
9.0 —				
				•
10.0				
11.0				
12.0				
12.0				
13.0				
		1 1		

PROJECT NUMBER

107493.P1.02

BORING NUMBER

CL-SD038

SHEET 1 OF 1

SOIL BORING LOG

PROJECT Reynolds Metals - RMC-Troutdale - Company Lake SDG LOCATION West of Sand Pile

ELEVATION 24.45

DRILLING CONTRACTOR Geo-Tech Explorations

DRILLING METHOD AND EQUIPMENT 9",0D 4 1/4" ID HSA; CME 55 Rig; 3" OD Split Spoon

		Not M			START 11-26-96 FINISH 11-26-96 LOGGER Rick Johns
		SAMPLE		,,	· · · · · · · · · · · · · · · · · · ·
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY FEET	STANDARD PENETRATION TEST RESULTS 6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
000 000 000 000 000 000 000 000 000 00	2.5 4.0 5.5 7.0 8.5 10.0 14.5	1-S 2-S 3-S 4-S 5-S 6-S 7-S 8-S 9-S	1.0 1.3 1.0 1.4 1.3 0.4 1.0 1.1	6" -6" -6"	OR CONSISTENCY, SOIL STRUCTURE, OR CONSISTENCY, SOIL STRUCTURE, TESTS AND INSTRUMENTATION
20.0 —					

PROJECT NUMBER 107493.P1.02 BORING NUMBER

CL-SD039

SHEET 1 OF 1

SOIL BORING LOG

PROJECT	Reynolds Metals	- RMC-Troutdale	- Company Lake SDG
---------	-----------------	-----------------	--------------------

LOCATION West of Sand Pile

ELEVATION 21.21

__ DRILLING CONTRACTOR Geo-Tech Explorations

DRILLING METHOD AND EQUIPMENT 9",OD 4 1/4" ID HSA; CME 55 Rig; 3" OD Split Spoon

WATER LEVELS Not Measured

START 11-26-96

ETNITEL 11-26-96

I DECED Rick Johns

WATER	ER LEVELS Not Measured		ELS Not Measured START 11-26-96 FINISH 11-26-96 LOGGER Rick Johns				
ı. E.F.		SAMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPTION	COMMENTS	
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY FEET	TEST RESULTS 6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	
5.0 -	2.5 4.0 5.0 6.5 7.5 9.0	1-S 2-S 3-S 4-S 5-S	1.0 1.0 1.0 0.5	3-5-6 (11) 3-3-3 (6) 5-5-5 (10) 2-3-5 (8) 2-10-14 (24)	POORLY GRADED SAND, (SP), brown, slightly moist, medium dense, medium grained, silty. Top 0.7 feet same as above, (SP), Bottom 0.3 feet: SANDY SILT, (ML), brown, slightly moist, firm, fine grained sand. SILT. (ML), brown/gray, slightly moist, firm, trace fine sand. At 8 feet, dark gray stained, possible process residue. Same as above, (ML), piece of 1 inch wood and organics in sample, no staining; possible original ground surface. Top 0.8 feet: Same as above, (ML), Bottom 0.2 feet: POORLY GRADED SAND, (SP), wet, coarse grained.		
15.0 —	13.5	6-8	1.0	5-8-7 (15)	Same as above, (SP).	Sample CL-SD039-0120-0 (12 - 13 feet) Boring Terminated at 13.5 feet. Backfill hole with 3/8 inch Bentonite Chips	
20.0 —					· -		
25.0 — - - -		1			_	-	
-						4	

PROJECT NUMBER 107493.P1.02

BORING NUMBER

CL-SD040

SHEET 1 OF 1

SOIL BORING LOG

PROJECT Reynolds Metals - RMC-Troutdale - Company Lake SDG LOCATION East of Sand Pile

ELEVATION 39.90

DRILLING CONTRACTOR Geo-Tech Explorations

DRILLING METHOD AND EQUIPMENT 9",OD 4 1/4" ID HSA; CME 55 Rig; 3" OD Split Spoon

WATER	LEVEL	Not M	easure	1	START _11-27-96	FINISH	11-27-9	96 LOGGER Rick Johns		
<u></u>		SAMPLE		STANDARD	SOIL DESCRIPTI	ON		COMMENTS		
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY FEET	PENETRATION TEST RESULTS 6" -6" -6" (N)	SOIL NAME, USCS GROUP SYME MOISTURE CONTENT, RELATIV OR CONSISTENCY, SOIL STRUG MINERALOGY	BOL, COLOR, E DENSITY CTURE,	and the second s	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION		
-					POORLY GRADED SAND. (SP), medium grained, fill.	, brown, dry,				
5.0 -							1-1-1-1			
10.0 —	10.0				Same as above, (SP), dense,	slightly				
_	11.5	1-S	1.5	10-15-15 (30)	moist. Same as above, (SP), pieces to 1 inch gravel.	of 3/4 inch				
_	13.0	2-5	1.5	27-30-31 (61)	Same as 1-S, (SP).]			
·E0	14.5	3-S	1.5	10-12-15 (27)			+			
15.0 —	16.0	4-S	1.5	10-20-22 (42)	Same as above, (SP).		1			
_	17.5	5-S	1.5	10-15-15 (30)	Same as above, (SP).		1			
	19.0	6-S	1.5	10-20-20 (40)	Same as above, (SP).		1			
20.0 —	20.5	7-S	1.2	8-6-6 (12)	Same as above, (SP), médium	dense.	-			
-	22.0	8-S	1.5	4-5-5 (10)	Same as above, (SP), wet.		1	•		
_	23.5	9-5	1.1	7-7-9 (16)	Same as above, (SP). Top 0.5 feet same as above, Bottom 0.5 feet: SILT, (ML),	(SP),		Sample CL-SD040-0235-0		
25.0 —	25.0	10-S	1.0	5-8-8 (16)	firm, wood fragments, no indic process residue; possible orig surface.	ation of	1	(23.5 - 25 feet)		
-	26.5	11-S	1.3	2-4-6 (10)	POORLY GRADED SAND, (SP), medium to fine grained, silty.	brown, wet,		•		
	28.0 28.5	12-S	1.2	2-4-8 (12)	Same as above (SP).		4			
	30.0	13-5	1.2	2-6-10 (16)	Same as above (SP).			Boring Terminated at 30 feet. Backfill hole with 3/8 inch Bentonite Chips.		

ATTACHMENT B
Cross Sections

LEGEND

Figure B-4
COMPANY LAKE
CROSS SECTION 3-3'
REYNOLDS METALS COMPANY
TROUTDALE, OREGON
Company Loke Supplemental Data Summos

200

L ML

100

Figure B-8
COMPANY LAKE
CROSS SECTION 7-7'
REYNOLDS METALS COMPANY

300

REYNOLDS METALS COMPANY TROUTDALE, OREGON Company Lake Supplemental Data Summary

Laboratory Physical Test Results

Hydrometer Analysis

With Mechanical Grain Size Analysis

ASTM D422

MECHANICAL ANALYSIS - SIEVE TEST DATA ASTM D 422

CLIENT CH2M Hil	.1			JOB NO.	2040-48		
BORING NO.				SAMPLED		10-21-96	
DEPTH				DATE TEST	TED.	11-17-96	
	CL-SD024-	-0000-0		WASH SIEV		Yes	0.111
	PO# 10749			DRY SIEVE		No	
	,						
MOISTURE DATA				WASH SIEV	ው አለአተሄሮን	re	
MOISICKE DAIA				MUDII DIEA	E MMADIO		
HYGROSCOPIC	Yes	y - 1 - 11 - 12 - 12 - 12 - 12 - 12 - 12		Wt. Total	Sample		ii .
1110110000110	168			WC. TOTAL	Wet (g)	115.19	
NATURAL	No			Weight of			
				Before Wa		0.00	
			, ,; ,	Weight of	+ #10		
Wt. Wet Soil & Pa	n (g)	34.73		After Was	hing (g)	0.00	
Wt. Dry Soil & Pa		34.09		Weight of			
Wt. Lost Moisture			7 7 7 7 7 7 7		Wet (g)	115.19	
Wt. of Pan Only		3.83		Weight of			
Wt. of Dry Soil		30.26			Dry (g)	112.80	
Moisture Content	8	2.1		Wt. Total	_	110 00	
					Dry (g)	112.80	
Wt. Hydrom. Sample	e Wet (a)	59.00		Calc. Wt.	"W" (a)	57.77	
Wt. Hydrom. Sample				Calc. Mas			
	, , ,						
	Indiv.		Cum.	Cum.	ક		
Number Weight			Wt.	8	Finer		
(Size) (g)	(g)	Retain.	Retain.	Retain.	By Wt.		•
3" 0.00	0.00	0.00	0.00	0.0	100.0		
1 1/2" 0.00	0.00	0.00	0.00	0.0	100.0		
3/4" 0.00	0.00	0.00	0.00	0.0	100.0		
3/8" 0.00	0.00	0.00	0.00	0.0	100.0		
#4 0.00	0.00	0.00	0.00	0.0	100.0		
<i>#</i> 10 0.00	0.00	0.00	0.00	0.0	100.0		
#20 2.29	2.39	0.10	0.10	0.2	99.8		
#40 2.32	2.49	0.17	0.27	0.5	99.5		
#60 2.28		0.15	0.43	0.7	00 3		

Data entered by: NAA Date: Data checked by: DIS FileName: C2HOSD24

#60

#100

#200

2.28

2.28

2.30

2.43

2.59

3.22

11-20-96 Date: 11-20-96

0.15

0.94

0.29

0.42

0.71

1.65

0.7

1.2

2.9

ADVANCED TERRA TESTING, INC.

99.3 98.8

97.1

HYDROMETER ANALYSIS - SEDIMENTATION DATA

CLIENT CH2M Hi	11	JOB NO. 2040-48	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR.	CL-SD024-0000-0 PO# 107493.P1.03	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	10-21-96 11-17-96 CAL Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.58 1.01 Sodium Hexametaphosphate 5.5 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W % of Total Sample	" 57.774

T						
Elapsed	Hydromete	er Reading		8	Effective	Grain
Time	Original	Corrected		Total	Depth	Diameter
(min)		"R"	100Ra/W	Sample	L	(mm)
0.0					~	***
0.5	59.00	52.50	92.1	92.1	6.61	0.0484
1.0	58.50	52.00	91.3	91.3	6.70	0.0344
2.0	56.50	50.00	87.8	87.8	7.02	0.0249
5.0	49.50	43.00	75.5	75.5	8.17	0.0170
15.0	40.50	34.00	59.7	59.7	9.65	0.0107
30.0	34.00	27.50	48.3	48.3	10.71	0.0079
60.0	27.00	20.50	36.0	36.0	11.86	0.0059
120.0	21.00	14.50	25.4	25.4	12.85	0.0043
250.0	17.03	10.53	18.5	18.5	13.50	0.0031
/ 1428.0	12.00	5.50	9.7	9.7	14.32	0.0013

Grain Diameter = K*(SQRT(L/T))

Client: Depth:

Classification:

Job Number: 2040-48

Advanced Terra Testing, Inc.

Grain Size Analysis

3-Inch to -2 Sieve ASTM D422

MECHANICAL ANALYSIS - SIEVE TEST DATA ASTM D-422

CLIENT CH2M HILL

JOB NO. 2040-48

BORING NO.	
------------	--

PO#107493.P1.03

DEPTH

SAMPLE NO. SOIL DESCR. CLSD023-0015-0

WASH SIEVE

SAMPLED

10-20-96

DATE TESTED

11-15-96 DLS

Yes

DRY SIEVE

No

MOISTURE DATA

WASH SIEVE ANALYSIS

Wt. Wet Soil & Pan	(g)	221.3		
Wt. Dry Soil & Pan	(g)	177.1	Wt. Wet Soil & Pan	
Wt. Lost Moisture	(g)	44.2	Before Washing (g)	221.3
Wt. of Pan Only	(g)	8.4	Wt. Dry Soil & Pan	
Wt. of Dry Soil	(g)	168.8	Before Washing (g)	177.1
Moisture Content %		26.2	Weight of Pan (g)	8.4
			Wt. of Dry Soil	
			Before Washing	168.8
			Wt. Dry Soil & Pan	
			After Washing (g)	80.1
		•	Wt. of Dry Soil	
			After Washing (g)	71.8
		1	-#200 Wash. Out %	57.5

Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum.	% Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
/						
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	. 0.0	100.0
# 4	3.71	4.11	0.40	0.40	0.2	99.8
# 10	3.97	5.56	1.59	1.99	1.2	98.8
#20	3.69	11.00	7.31	9.30	5.5	94.5
#40	3.70	18.87	15.17	24.47	14.5	85.5
#60	3.67	15.00	11.33	35.80	21.2	78.8
#100	3.72	19.44	15.72	51.52	30.5	69.5
#200	3.61	23.84	20.23	71.75	42.5	57.5

Data entered by: DLS Date: 11-18-96 Data checked by: DPM FileName: C2S00230

Date: 11-18-96

ADVANCED TERRA TESTING, INC.

MECHANICAL ANALYSIS - SIEVE TEST DATA ASTM D-422

CLIENT CH2M HILL

JOB NO. 2040-48

BORING NO.

PO#107493.P1.03

DEPTH

SAMPLE NO. SOIL DESCR.

CL-SD030-0035-0 3

CL-SDQ3Q-QQ35-Q 2

SAMPLED

10-12-96

DATE TESTED

11-15-96 DLS

WASH SIEVE

Yes

DRY SIEVE

No

WASH SIEVE ANALYSIS

Wt. Wet Soil & Pan	
Before Washing (g)	255.3
Wt. Dry Soil & Pan	
Before Washing (g)	251.1
Weight of Pan (g)	8.2
Wt. of Dry Soil	
Before Washing	242.9
Wt. Dry Soil & Pan	
After Washing (g)	246.8
Wt. of Dry Soil	
After Washing (g)	238.7
-#200 Wash. Out %	1.7

Sieve Number (Size)	Pan Weight (g)	Indiv. Wt. + Pan (g)	Indiv. Wt. Retain.	Cum. Wt. Retain.	Cum. % Retain.	% Finer By Wt.
/	(3)	(3)				- <u>-</u>
	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	3.55	3.81	0.26	0.26	0.1	99.9
#1 0	3.64	18.56	14.92	15.18	6.2	93.8
#20	3.73	88.02	84.29	99.47	41.0	59.0
#40	3.71	77.60	73.89	173.36	71.4	28.6
# 60	3.66	53.54	49.88	223.24	91.9	8.1
#100	3.69	14.54	10.85	234.09	96.4	3.6
#200	3.74	8.32	4.58	238.67	98.3	1.7

Data entered by: DLS
Data checked by: DPM
FileName: C2S00035

Date: 11-18-96
Date: //-18-76

ADVANCED TERRA TESTING, INC.

Client:

Classification_

Job Number: 2040-48

Advanced Terra Testing, Inc.

MECHANICAL ANALYSIS - SIEVE TEST DATA ASTM D-422

CLIENT CH2M Hill

JOB NO. 2040-48

SAMPLED

BORING NO. DEPTH

SAMPLE NO. SOIL DESCR.

CL-SD029-0020-0 PO# 107493.P1.03

DATE TESTED 11-11-96 ARH WASH SIEVE Yes DRY SIEVE

10-20-96

WASH SIEVE ANALYSIS

Wt. Wet Soil & Pan	
Before Washing (g)	218.5
Wt. Dry Soil & Pan	
Before Washing (g)	208.2
Weight of Pan (g)	8.3
Wt. of Dry Soil	
Before Washing	199.9
Wt. Dry Soil & Pan	
After Washing (g)	46.1
Wt. of Dry Soil	
After Washing (g)	37.7
-#200 Wash. Out %	81.1

Sieve Number (Size)	Pan Weight (g)	Indiv. Wt. + Pan (g)	Indiv. Wt. Retain.	Cum. Wt. Retain.	Cum. % Retain.	% Finer By Wt.
·						
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.00	0.00	0.00	0.0	100.0
#10	0.00	0.00	0.00	0.00	0.0	100.0
#20	3.70	4.13	0.43	0.43	0.2	99.8
#40	3.67	4.34	0.67	1.10	0.6	99.4
#60	3.81	7.31	3.50	4.60	2.3	97.7
#100	3.77	19.28	15.51	20.11	10.1	89.9
#200	3.67	21.29	17.62	37.73	18.9	81.1

Data entered by: NAA Date: 11-12-96
Data checked by: DLS Date: 11-12-96 FileName: C2MOSD29

ADVANCED TERRA TESTING, INC.

COBBLES	GI	RAVEL	1		SAND				SILT OR CLAY	
	COARSE	F	INE	CRS	MEDIUM	FINE				USCS
COBBLES	PI	BBLE G	RAVE	i.	S	AND		SILT	CLAY	WENTWORTH
TO BOULDERS	COARSE	MED	FINE	GRAN	COARSE	MED	FINE			

Client:

CH2M Hill

Boring No.:

Sample No.: CL-SD029-0020-0

Job Number: 2040-48
Classification

Depth:

Advanced Terra Testing, Inc.

MECHANICAL ANALYSIS - SIEVE TEST DATA ASTM D-422

CLIENT CH2M Hill

JOB NO. 2040-48

BORING NO. DEPTH

SAMPLE NO. SOIL DESCR.

CL-SD012-0015-0 PO# 107493.P1.03 SAMPLED
DATE TESTED
WASH SIEVE

10-19-96 11-11-96 ARH

WASH SIEVE Yes
DRY SIEVE No

WASH SIEVE ANALYSIS

Wt. Wet Soil & Pan	
Before Washing (g)	438.7
Wt. Dry Soil & Pan	
Before Washing (g)	255.9
Weight of Pan (g)	8.6
Wt. of Dry Soil	
Before Washing	247.4
Wt. Dry Soil & Pan	
After Washing (g)	93.3
Wt. of Dry Soil	•.
After Washing (g)	84.7
-#200 Wash. Out %	65.8

Sieve Number (Size)	Pan Weight (g)	Indiv. Wt. + Pan (g)	Indiv. Wt. Retain.	Cum. Wt. Retain.	Cum. % Retain.	% Finer By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	. 0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.00	0.00	0.00	0.0	100.0
#10	0.00	0.00	0.00	0.00	0.0	100.0
#20	3.79	8.90	5.11	5.11	2.1	97.9
#40	3.68	12.35	8.67	13.78	5.6	94.4
#60	3.78	16.81	13.03	26.81	10.8	89.2
#100	3.82	24.86	21.04	47.85	19.3	80.7
#200	3.72	40.57	36.85	84.70	34.2	65.8

Data entered by: NAA
Data checked by: DLS
FileName: C2MOSD12

Date: 11-12-96
Date: //-/2-96

ADVANCED TERRA TESTING, INC.

Client: Job Number: 2040-48

Classification_

CH2M Hill

Depth:

Advanced Terra Testing, Inc.

APPENDIX D

Laboratory Analytical Data Summaries

EPA Defined Qualifiers

Organic Compounds

- U = The compound was analyzed for but not detected.
- J = Estimated concentration.
- J = Value is estimated as a result of QA review.
- B = The compound was found in the associated blank as well as the sample.
- D = Compound has been run at a dilution to bring the concentration of that compound within the linear range of the instrument.
- E = Concentration exceeds the linear range of the instrument; associated value is estimated.
- R = Result is rejected owing to gross QA/QC outliers; presence or absence of material cannot be certain.
- X = Compound concentration has been manually modified or the EPA qualifier has been manually modified or added.
- JX = This value is less than the sample quantitation limit that would have been displayed for "U."

Inorganic Compounds

- U = Constituent not detected at associated practical quantitation limit.
- J = Value is estimated as a result of QA review.
- B = Estimated value; value is greater than the instrument detection limit, but less than the contract required detection limit.
- R = Result is rejected owing to gross QA/QC outliers; presence or absence of material cannot be certain.
- L = Analyte present. Reported value may be biased low; actual value is expected to be higher.
- UL = The compound was analyzed for but not detected. Reported detection limit may be biased low; actual detection limit is expected to be higher.
- K = Analyte present. Reported value may be biased high; actual value is expected to be lower.

ì				,		Surfa	be Solf and Sed	Surface Soll and Sediment Sample Analytical Results for 1996	notytical Results	for 1996				1 4 00000 00000 000	T CONTRACTOR	T. CONTRACTOR CO.	CI CINOT MOUNT
	Camp (max)	C. SOM JANNA CL. SOM DOM OF SOM DOM DOM OF SOM DOM DOM OF SOM DOM DOM DOM DOM DOM DOM	CL. SD003-0000-0	CL-50004-0000-0	g	C1-SD009-0000-0	CL-SD011-0000-0	CL-50013-0000-0	C1-SD018-0000-0	CL-\$D019-00000		CL-SDCZ-UODO	CL-SUZA-COOL	CL-SOOR	Castoria Co.	ZI-SDOM	C.8007
Sornale IO:	1.50001	CL-\$0002	C1-50000	CL-SD004		CL-SD009	CL. SD011	CL-SD013	CL-SD018	CL-SD019	Cr-SONA NO CONS	100000	10/20/96	19/20/%	10/21/26	10/21/96	10/21/96
Station La	10/15/96	10/15/96	10/15/96	10/16/96		10/19/96	10/19/96	10/20/20	O'AUTO	10,00	1000	0101.5	1010	0001.5	01015	0101	100
Dorth (feet)	0 to 1.2	0101.5	0 to 1	0101	1	010	01013	0101	200								
Arceste (mo/kg)						76		7.9	4.1	8.1	1.3	1.4	10	4.4	36	n.	13
Cyanide, Total	31	a.	0.0010		0,001	19000	12000	13000	34000	21000	7000	8100 [3]	19000 (1)	25000 (1)	(r) 000cs	000000	27000 (1)
Fluoride by 340.1/.2	moş/	0/6	87	9.3	58	24(5)	44 (3)	3.5 (J)	41 (3)	170(1)	160 (1)	8	88	180	120	20802	89400
Fluorida By 300.0	00585	10500	20100	4430	90,09	00/09	27200	67100	185000	2000	moc	ASSECT N	man i	2000			
1000000							1 007 000	1 0000	100002	Loww	28800	35400 (3)	28200 (J)	41500(J)	67 00PSS	(f) 006/Z	37200 (1)
Abminst	382003	25803	L00161	F00061	26000	370007	U822	1960 1961	250	250	250	25W	2.5W	25W	25W	mot	25W
Actional	mot	2.5 W	25W		36.7	250	000	355		10.2	702	19.6	9.75	15.3	16.5	12.9	11.8
Actoric	13.8	10.1	503		10.4	355	37.0	72	122	147	87.1	35	228	194	267	250	219
Bodem	257	152	011		8	112	27.	5 57	240	161	0.85	208	1.45	214	3.39	2.5	22
Berdium	26	0.78	60		1.19	18.1	147	51	979	268	0.50	331	297	3.84	3.44	5%	7.63
Codmin	3.7	1.17	1.54		187	1.92	4,43	19,000,01	0,000	24100 (5)	13 00101	26200	34500	31900	00009	67400	43000
Colclum	70500 (1)	6440 (J)	16200 (J)		23000 (J)	(days)	43.00 (J)	200	123	67.6	60.3	41.5(0)	60.100	93.1 (1)	57.2 (3)	26.2 (1)	31.7 (1)
Chombun	342	30.2	20.8		XX.		071	144	28.1	149	82	16.2	20.6	30.2	18.2	£8	9.76
Cobat	10.7	12	6.82		877	2,000	6.00	82	280	81	131	161	173	266	345	8	35
Copper	97.5	46.3	43.3		29	800	20000	O Bull	9050	18400	1,400	00861	22000	22700	23000	23800	22800
Con	26500	32300	21300		20600	24300	2007	176	988	71.5	25.6	52.4	54.5	58.6	14	87.9	76.6
Pod	5.19	37.8	23.8		63	40.0	Direct Control	1000	1700	3140	3900	3060	4590	4200	3540	3430	3200
Mognestum	2920	0219	3200		3828	200	37.6	953	251	428	233	655	468	533	877	0222	1760
Monochese	879	473	607		383	9/0	35	300	200	03	020	888	0.49	0.499	17870	0.866	0.44
Mercury	101	020	0.28		0.37	0.49	200	3	102	202	453	389 (3)	414(3)	(1) 699	345(J)	79.2(1)	133 (1)
Neckel	901	. 25.8	42.5		318	733	4	3/2	716	200	8	1070	0861	1630	0%(1890	1440
Defension	3350	2200	956		1550	1970	2010	3		1,5		81	2	1.9	1.4	4	2.9
Colorina	73	101	4,1		11.79	1.9	3.1	×.		21			n1	ni.	12	1.50	ηί
10000	1.50	191	101		21	2	n n		0.000	1	900	9891	1540	1910	3890	3470	2830
Series Contracts	089	626	1640	. 100	2050	2270	2480	88/	OCIA	11.			1.0	101	20	2	וח
Doğum	10	2	101	10	22	2			265	130	133	125	141	261	113	969	74.7
Vonoctium	94.3	6.17	622	73.3	8	252	2		2 88	135	73.9	191	192	174	ıø	0101	258
200	175	173	94.1	જ	383	148	6/1		-	-							
PAHS						1.00	1001	1171	1 1190	37.0	0.49 U(J)	47.0	חוו	0.7.0	240	330	280
2-Methylrocohtholene	430	n 6910	22.0	0.48 U	180	061	100	15.0	198	37.11	OA9 ULB	0.14	211	C.98.1	240	າຂ	260
Acenophthene	430	0.49 U	22 U	0.48 U	280	1.90	1000		190	37.0	0.49 UCI	47 U	n n	0.7.0	240	330	28 U
Acencionthylene	430	0.49 U	220	0.48 U	n Q	2		1860	1.20	633	0.064 JCB	8.8 J	1.6.1	81	22.1	ē	283
Anthrocene	-676	0.49 U	63.1	0.48 U	55.5		200		15	8	0.56(1)	8	z	1900	130	8	2200
Benzo(c)cmthrocene	00%	0.123	88	0.071 3	3 /	0%	2		L 780.0	S	COSS JUN	18.	333	150D	ĸ	rz.	23.7
Berzo(a)pyrene	Q 091	0.13.1	8	61.0	0/5	200	376		13	130	0.38.1(1)	97	23	2400	8	8	n (SZ
Benzo(b)/fluoranthene	2002	0.39.1	160	0.17.3	2	9	0.5		090	37.0	0.49 U(J)	47.0	ຜນຕ	43	240	33.0	280
Benzo(g,h.)perylene	z	0.16.1	33	0.57	3 5	,	091	4.8	0.62	æ	0.25 JU)	8	18	જ્ઞ	g	\$	8
Benzo(k)/fuoronfhene	1300	0263	2/	0.13	3 5	046	097	150	21	130	0.78(J)	500	43	3000	2400	8	1000
Chrysene	200℃	0.29.3	OOK	21173	2	1101	11001	1000	0,062.3	12.7	0.49 U(J)	LEI	4.1 J(J)	18	ŝ	[2]	26.
Dibenzo(a.h)anthracene	430	0.49.0	220	1 8700		945	31.7	8.7	2.8	47	(1)	π.	7.7.3	180.0	240	***************************************	- 11
Fluorenthene	1100	0.123	11.00	1 870	2611	190	1001	0.31.7	0.24 J	37.0	(L) (L) (L)	47.0	310	7.6.7	407	23	166
Puorene	200	0.440	24	023.1	A	4.1	283	14.	0.60	fil	0.49 U(J)	9.7.3	25.3(1)	3	62	100	0.00
indenc(1,2,3-cd)pyrene	100	11 100	200	0.100	D 100	U 10.0	0.100	. N 10'0	0.000	ດ ເວດ	0.010	0.010	0.00	0.00	200	199	30
NONINGENE		11070	54.1	0.48 U	35	1.2.1	U 001	1.33	0.3.1	4.7.3	0.12.1(1)	323	1.2.1	95.	3 5	223	\$5
Pyrene	000	0.11.0	22	0.056 J	r 6'9	4.5	26.5	5.6	0.48 J	R	021.7(3)	24.3	5.0.7	281			
PCB4								4411	11.0	0.7511	Opposite	0.04110.0	1 000	0.60	12U.	1.6 U(J)	1.3 ບເກ
Aroclor 1016	0.85 U(3)		0.55 U	0.048 U	130	α97 υ	2.1 0(3)	0.072 ULI)	0.30	0.730	100000	19000	2 000	20	250	3.4 U(3)	2.7 UU)
Aroctor 1221	1.7 u(3)		U.1	0.097 U	27 U	20	4.2 U(J)	U. D.	1100	1157.0	0.049 UCB	0.94 U(J)	E)D I	0.60	120	1.6 U(J)	1,3 U(1)
Aroclor 1232	0.85 U(1)		0.55.0	0.048 U	130	0.97 U	Z.1 U(J)	0.072.000	000	1320	OUNGILL	0.04 10(3)	יותע	0.67.0	120	(r)n 9"1	1.3 U(J)
Aroctor 1242	0.85 U(J)		0.55.0	0.048 U	130	0.97 U	2.1 0(3)	0072000	000	08.5	0.45 (1)	0.94 UCD	(D) I	0.60	120	1.6 U(3)	1.3 U(1)
Aroclor 1248	(r)n 98'0		0.55 U	0.048 U	1,30	0.97 U	2,10(3)	0.000	189	1150	Ordonin	0.94 U(J)	SO L	U 26'0	1.20	1.6 ሀርሀ	1.3 ሀ(រ)
Aroclor 1254	(1)n 58'0		0.55 U	0.048 U	130	0.97 U	2.10(3)	0.072.0(0)	1100	0.251	0.0491100	0.94 U(J)	in in	0.670	120	1.6 U(J)	1.3 0(1)
Avocior 1260	(r)n 58'0	0.049 U	0.55.U	0.048 U	1.30	0.60	27 00)	0.072 000	031	0.750	(1)0 (A)O	0.94 U(J)	CON 1	0.650	120	በ የነው ነ	1.3 U(1)
Aroctor 1262	0.85 U(1)		0.55 U	0.048 U	15.1	0,90	2.11(1)	0.59(1)	0.96 P	0.75 U	0.049 U(J)	0.94 U(J)	(r)n (U 26'0	120	1,60(1)	1.3 UC)
Aroctor 1268	0.85 U(J)		0.550	0000	200	200		7	-								
HPH COLO LOST					7	10	n	-	-	5	Þ		ם	85		uka	007
Oscally 2015	œ,	<u></u>	970									280		120	7	7	
2000																	,

 $\langle m \rangle$

$\overline{}$	۰
r:	
1:	
ĸ	
₹ .	
18	
[₹	
!₹	
Łŏ.	
ō	
ιδ	
bQ	
ō.	
Ω	
13	
13	
8	
122	
Š.	
įž	
ĕ	
ΙĒ	
D.	
ad on professional judgmer	
ě	
ro#x	
8	
13	
₽.	
33	
ō	
ON THE	
ᅻ	
15	
16	
10	
od protocol	
10	
10	
18	
1-	
1	
ı	
1	
•	
1	
1	
1	

تة *	þ	•
*	*	
11589	ø	
æ	preciter	
	9	
9.	25	
e cred	₹	
ž	₫	
ă		
	Ş	
₹	20	•
2	Q	
	CH e	
≈	×	

ing to gross QA/AC outless presence or obsence of material cannot be certain

l									Table D-1		1001					,		
			1	2 2200	Companyon Co	Dame and	Surface Soil and Sediment Sumple Analytical Results for 1770	CL-SOIL CAND Sed	CL-S0013-0000-0	CT-20018-0000-0	CT-8D019-0000-0	CL-SD020-0000-0	1-50022-0000-0	CL-SD024-0000-0	CL-SD028-0000-0	CI.50032-0000-0	CL-5002-00004 CL-5002-0004 C	CT-80007-0000
П	Sample ID:	CL-\$2001-0000-0	10	CT-80003	CI-80004 CI-80005	CI-\$0005	CL-\$D009	CI-\$0011	CI-\$2013	CL-SD018	CL-SD019	C1-50020	10/20/96	10/20/96	10/20/96	10/21/96	10/21/96	10/21/96
T	Date Sampled:	10/15/96	10/15/96	10/15/96	10/16/96	10/19/96	10/19/90	0101.5	0 to 1	100	0 to 1	0101	0101.5	0 to 1	0 to 1.5	0 to 1.5	0101	0 to 1
П	Depth (feet)	0 to 1.2	Г	I	980													
3 3	natyte (mg/kg)						11100	(1000	0.01 U	n 100	n 100	0.01 U	D 100	0.01 U	0.01 U	D 100	0.020	0.010
ĺ	1,1,1,2-Tetrachioroethane	0.01 U	0.01 U	0,010	0.010	0 100	0 100	0.00 U	n 10'0	0.010	0.01 U	0 100	0.010	U 10.0	0010	0010	n 2000	2010
П	1,1,1-l/ichloroethane	0010	0 100	0.010	0.010	0.00	n (00	0.01 U	0.010	0.010	0.10.0	0010	0016	0 100	0.010	00100	0.020	0.01
Т	1,122-Jetrochorostrone	2010	0.100	n 10'0	0.010	0 f0.0	0.010	0.01 U	0 100	0.010	0000	0 100 ·	0100	0.00	U 10.0	D 1000	0.02 U	0.100
Т	1.1-Dichloroethone	0.01 0	n tơo	0.01 U	0.01 U	0.010	0010	0000	00100	0010	0.01 U	0 10.0	0.000	0.01 U	0.01 U	OO1 U	0020	0.01 U
Т	1,1-Dichloroethene	U 10.0	0 (0.0	Ī	0.010	0 100	0.00	n 100	0 100	0.010	0.01 U	0.01 U	0.010	0.01 U	0.01 U	0 (00	0200	0.00
П	1,1-Dichioropropene	U 1000	100	1	0010	0.10.0	0.00	O 10.0	0.01 U	D 10'0	0.01 0	0.01 U	0010	0010	0000	0010	0.500	800
Т	1,23-Inchlorobenzane	2000	0010	1	0.01 U	0.010	0.01 U	D 10.0	0.01 U	0.010	0.010	0010	0010	0.01 0	0.01 U	0.01 u	n 2010	n toro
T	1.2.3-inchoroberzene	O 100	U 10.0		n 10°0	n 10'0	0.00 U	0100	0.010	0010	0.010	0.000 U	u 10.0	u 10.0	ט נפ.פ	υ 10x0	n 2010	n 1070
Т	1,2,4-l/me/hylcerzene	U 10.0	0 10.0		Ī	0.00	0.100	op ion	0.01 U/R)	0.01 UR	tyn to'o	0,01 U(R)	(A)n 100	(A)O 10:0	0.01 U(R)	0.01 Upg	000 200	00100
T	1,2-Dioromo-3-	0.00	0010		100	0,000	0.00	0 100	0.01 U	0.01 n	0.01 U	0.01 U	0.100	0.01 U	0.01 0	0010	2000	1000
7	1,2-Dibromoethorie	0.01 U	0.010	l	T	000	0.00	0.010	0.010	n 10'0	0.01 U	ω) u	n 100	8010	00 E	0010	argue of the second	000
	1,2-Olchlorobenzene	000	0010	T		n 100	n 100	0.01 u	ט ומט	0.00 U	0.010	0010	0010	1000	0010	0.01	0.020	n tôn
Т	1,2-Okthoroemone	0010	0.000	1		0.00	0.00	O 10.0	0.010	0.010	0010	907 0	0010	0.01	0,01 U	0.010	0.02.0	n 1070
T	1.2-District operations	0,100	n tôro	1	0.010	O 10.0	D 100	0.01 0	0010	0010	0.00	n 100	100	0.01 0	0.01 U	0.01 U	0.020	0.00
7	1,3-Okchlorobergene	0.00	0.010			0,100	0.00	000	0010	0.00	0.010	n 10'0	0.01 U	0.01 U	0.100	0.61 U	OZW.	0010
П	1,3-Dichloropropone	0010	0 100	000	0.00	0 100	0.00	n 10'0	0.01 U	U 10.0	n 10'0	0.010	0010	0.00	0010	0.00	0.020	0.01
Т	1,4-Dichorocentus as	000	0.000	1		n t0'0	n t00	0.100	0.00	0010	0.010	200	0010	0 10.0	0.01u	U 10.0	0.020	0.010
Т	2-Chlorololuene	0.10.0	n 10'0		n 10'0	n 10'0	0.100	0.010	1000	0.010	0 100	n 100	0.01 U	0.00	0.00	n t00	0.020	100
7	4-Chlorotoluena	n 100	0.100	Ī	0.00	0.00	0.000	000	0.10.0	0.03 u	0.01 U	n t00	0.00	0.01 U	0.010	0 100	1900	0.00
П	Benzerve	0018	11100	0010	0.00	n 10'0	n tơo	n 10'0	0.01 U	0.010	n 10'0	0010		0010	0.00	n 100	0.020	n 10'0
T	Bromocenzerse	2000	0.00	1	0.01 U	n 10'0	n tiro	0.01 U	0.01 U	0.010	0,07	0010	0010	U 10.0	0.01 U	0.01 U	0.02U	0.01 U
Т	Bromodichioromethone	O (0.0	O 10:0		U 10:0	0.10.0	0010	0.00	0000	0 100	0.10.0	0.01 U	0.010	0.01 U	0.01 U	0.01 U	0.002.0	0010
П	Bromoform	0.01 U	0.00	100	0000	0 100	D 100	0.10.0	0.01 U	ט וט נ	0.01 U	0.01 U	0.010	0010	0.010	0010	0020	0.01 U
T	Bromomemone	2010	0.00	n 100		n 1870	0.00	0.01 U	0.010	0010	0010	n 100	0010	0.010	0.01 U	0.01 0	0.020	0 100
Ť	Chlorobenzene	n 1070	0.00	n toʻo	0.01 U	0.100	0.00	0010	0 100	0010	0.10.0	n 100	0.01 U	0.01 U	0.01 U	0.01 U	0.020	200
П	Chlorosificane	0100	0.100	0010		0 100	n 100	U 10.0	0.010	0.01 0	n 10'0	. ODI U	0.010	0010	0010	001	0.002 U	000
Τ	Choronethora	0100	0.01	U 100		n 100	0.10.0	0.01 U	0.010	0.010	0010	0010	8010	n 100	0.01 U	0.01 0	0.020	0.010
7	Cis-1,2-Dictrioroty/thene	. 0.01 u	n 100	0.01 U		0.10.0	0.010	0010	0000	0.01 U	0,01 u	0.000	0.01 u	0.00	0.00	0.01 U	0.020	2010
П	Cts-1,3-Dichloropropene	n toro	0.010	0010	T	0 100	0 100	0 10 D	n t0'0	0.01 U	O (0,0	n 1010	0.000	0.01 U	0010	0.010	0200	0.00
Т	Dibromochioromethone	000	0000	0.00	0.010	0.00	n tơo	0.01 U	0.010	n 100	0.10.0	0010	00110	0010	0.010	0 (QQ	0.02 U	0.01 U
T	Dictionality	0.00	001 U	n 10'0		n 10'0	n (00	n 100	0.010	0010	0.010	2010	0.010	0.000	0 IQ.Q	n 100	0.020	0 IG0
П	Ethylbenzene	n 100	n 1070	0.00		0.010	0.010	0.00	0.010	0.000	n 10'0	0.100	0.010	0.01 U	0.01 U	0.010	0200	2010
Т	Hexactilorobutodiene	001	0 100	0.100	0.10.0	0 100	0.00	0.01 0	0.01 U	n 100	0.01 U	0.010	0.010	0010	021 (33)	trin 6500	0.15 ປ.ກ	nu 180'0
Т	Methylene Chloride	n 100	0.023 U	0.023 U		0.0 110.0	0.024 (U)	0.028 (U)	0.044 [0]	0.01 (0)	0.00	0 100	0.010	0.00	0.01 U	n 10'0	0.020	0.01
П	N-Butytoenzena	n 1010	0.01 U	0 (0.0	0.01 U	0.100	0.100	00100	0 100	0.100	n 10'0	n 10'0	0.000	n 10'0	0.010	0.01 u	ozu ozu	0100
Т	N-Propy/Denzene	0.00	0000	0 100	0 100	n t00	n 10'0	ט ופ.ס	υ (0.0	0.010	0.00	0.010	0010	0010	0.00	0.00	Dazo	n 1010
Т	P-RODIODYTONIENE	0010	0000	0,010	D 100	0.00	0.100	0.01 U	0.01 U	0.010	0.00	0100	0010	0 100	D 100	n too	0.02U	n tore
7	Shuede	0100	0 100	n toʻo	n t0:0	n 10'0	0.100	0.01 U	0.00	0.00	0.00	0.010	0.01 U	0.00	0.DI U	n 100	0.020	0.01 0
П	Tert-Butytbenzenø	n 1000	n t0'0	0.010	u 100	0,010	0.000	0.010	0.00	0.0) u	0.00	n 100	0.10.0	0.01 U	0.01 0	0.00	0200	0010
П	Tetrochloroethene	n 100	0.01 U	0.010	0.01 0	0 100	n 100	0 IQ.0	0.010	0.01 U	n toʻo	O.0) U	0.010	0.01 0	0.01	0.00	0.020	0.010
Т	Inns-12-Dichiochathana	0.00	0010	0.00	n t00	0.01 U	0.00	n 10:0	0.010	0.010	0.01 U	0010	0.00	0010	0.01 u	U 10.0	0.020	n 100
T	Irons-1,3-Dichloropropens	n 1070	U 100	0.01 U	0.01 U	U 10.0	n 10°0	0.10.0	0.01 U	0.010	0.010	0010	0 100	0.01 U	0.01 U	0.00 U	0.020	0.10.0
П	Trichloroethene	0.01 U	υ (0.0	0.010	n 100	0.010	0 100	0 100	0010	0 100	0.01 u	0.01 U	n 10'0	0.01 U	0.01 U	U 10.0	0.000	800
П	Inchioralluoromethone	U 10.0	0.01 U	0,01 U	0.01	0.010	0.100	0 10.0	n 100	0.01 U	0.01 U	0.000	0.01 U	0.010	0.01 0	0 100	0.020	n 100
Т	Xylenes, Total	0000	0.00	0 t0.0	n 10'0	U 10.0	n 10'0	0.01 0	0 (0.0	0.01 U	0.010	0 300	0.010	2010				
ξĺ	Abbreviolibns and Symbols																	
- 0	* compound run at a district to being the concentration of that compound within the linear large of the statistissis	to bring the conce	ntration of that co	mpound within the	linear range of the	A MANUTURAL M												
5 0	greater than 25%, atterence for detected concentrations between the two columns used for analysis set if telephone 25%, atterence for detected concentrations between the two columns used for analysis.	for detected conk	centrations between	en the two columns	s used for analysis not be certain													
			THE PARTY OF THE P															

				030000000000	Onitopytons	CI-SD018-0020-0	0000 CL-80019-0000-0 CL-800	CL-\$000000005-0	C1-SD022-0030-0	CL:SD024-0015-0	CL-STORTS-COMP	CHOCK CO.	2008-12	CL-SDG37
Somole ID: Station ID:	CI,50005-0010-0	CL-SD009-0020-0	CI-SD011	Q-20013	C1.SD016	C1-SD018 10/20/78	10/20/96	CI-SD020	10/20/96	10/20/96	10/20/28 3 to 4	10/21/95	10/21/96 2 to 3	10/21/96 3.510.4.5
Death (feet)	10/19/70	2 to 3	2104	251035	1 102	2103	3104	2510 3.5	2077					
						1 11		10.1	1.0	Ωt	10	nι	nt ores	טר אי
Potol	101	nι	10	101	NIA NI	400	450	470	£30 CF	17 060	380.03	400 50	151	200
by 340,1/2	470	410	14/1	0392	41 (3)	50 CD	U) 69	17.68	2255	mari	8310	16400	2000	12900
Puoride By 300.0	30.00	0868	3630	15500	10001	8850	8500	7500						41 00001
onic Corpor					1 00000	1 00201	100151	1,0279	8190 (J)	(f) 000S1	(T) 0856	610010	Days.	12000
	24000	16400.1	60029	102003	1,200,3	1196	250	250	2,510	25W	25m	25gm	2002	73
	250	250	250	0.55	759	22	2.5	3,4	2.4	32	87,67	8	151	701
	3.1	3.1	2.0		111	609	110	945	51.7	45.0	0511	080	0.62	0.50
	148	112	20.8	\ \frac{1}{2}	0.50	0.50	0.50	050	0.50	n cro	1190	050	0.50	0.50
	0.50	0.50	0.50	540	0.76	0.50	0.50	050	0.50	0.00	080	3850	5490	D\$5\$P
e	0.50	000	0,000	W) UVYY	4200 (1)	4950 (3)	5780 CB	4470 (.)	0,000	10.2 (1)	19.50	13.8 (J)	24501	17.403
	00 000V	62000	4132 17	2000	162	13.1	20.8	15.7	10220	25.5	079	7.95	11.6	808
Chromkim	38	21.4	25.5	901	6.71	6,69	8.22	707	200	16	21.9	21.2	25.8	25.7
	7.51	878	148	433	23.6	19.2	19.1	212	0000	ucos	00061	15400	29800	19100
	343	À	955	0.056	18300	13200	20200	00.59	1000	525	62	5.6	9.6)5
	21800	2017	113	34.0	26.7	50	6.5	8.5	0000	50/7	0696	3520	5240	4080
	6.0		037	OK.O'S	3040	2550	4450	3300	N N	381	133	100	415	221
8	5500	4520	1	090	219	199	er.	145	100	360	020	020	020	020
Mongonese	192	000	1100	020	020	0.2.0	020	0.2.0	0.20	2146	12210	12.7 (J)	20.2 (3)	14.8 (J)
	0.2.0	020	2010	8	121	10.9	16.5	14	0.000	2467	718	816	1390	1220
	38.4	102	31.5	0900	0501	749	1310	88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		101	2.	1.01	10
Pokasium	1700	Olei	111		101	nι	al		0.1		101	=	10	10
	,				nı	1.01	10	0	0.00	010	780	753	483	725
	7	0	828	850	126	963	888	288			101	n2	1 01	10
	/00	200	= 1	101	101	מר	30	2		515	452	43.8	62.1	488
			63	603	50.8	43.6	540	45.4	200		37.5	38.7	65.7	71.8
Vorockum	64.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	980	82	114	35.5	48.1	23.7	CY.4					
	1.57						1 11970	1 1104.0	0.48 1120	0.54 U(J)	0.490	0.51 0.00	0.480	TO SENT
	1 11 19 0	1 070	0.43 U	0.550	0.620	0.50	10000	11070	0.48 UCI	0.54 ULD	0.490	ດຣາ ບຸດ	0.003	0.000
2-Methynophinosone		11070	0.43 U	0.550	0.52 U	050	1137	11000	0.48100	0.54 U(J)	0.49 ሀ	0.51 U.D	0.48 U	0.000
Acencontinene		11000	0.43 U	0.550	0.52 U	. 050	0000	1000	0.481/10	0.54 UU	0.490	0.51 U(J)	0.480	0.000
Acencohimene		1 11070	0.43 U	0.55U	0.52 U	0.50	1,450	11000	0.481101	0.11.10	0.490	0.51 0.00	0.480	0.020
2		11 670	1900	0.560	0.52 U	0.2.1	1000	11000	0.48 UCD	0.54 U(I)	0.49 U	0.51 U.D.	0.480	20.000
ninocene		0.4911	r9900	0.2.1	0.52.0	0.50	1000	11000	0.28 0(3)	0.045.309	0.490	0.51 0.0)	0.887	1000
Merke	1 460	1 1900	0.12.3	0.850	0.520	Call		11070	0.48 UL)	0.54 U(J)	0.490	0.51 0.0	0.480	UNICH O
Benzo(D)IIIO(CIII)GUE	1,1200	1000	£ 890.0	0.550	0.52 U	dau	10000	11000	0.48 ((())	0.54 UCD	0.490	0.51 U.D	0.480	0.631178
LIDOMYSET NO.	1410	0.49 U	L870.0	0.550	0.52 U	0,000	1000	11000	0.48 U.0	0.15.10	1,600	0.51 0.00	CAOTO	DES IND
COUNTRIES	1,960	1.2800	1810	0.560	0.52 U	120	1 1 1	11000	0.48 U(J)	0.54 UKB	0.49 U	051 00	0.480	0.62100
Caronic Northweste	0.50	0.490	0.43 U	0.560	0.520	000	1180	0.490	0.48 U(J)	0.16 JEJ	0.49 U	0.51 0.00	10000	U30 C5 U
900	0.510	0.49 U	0.082.3	0.550	0.200	1130	0.4511	1 0.450	0.48 U(D)	0.54 0/3	0.490	rio igo	11870	0.52 0.00
	0.51 U	0.490	0.43 U	0.850	n zen	1190	0.4511	0.490	0.48 U.D. 1	0.54 ULT	0.60	no iso	1100	חומט
Indeped 2 3-cd/symane	0.082 J	0.49 U	0.430	0.80	N Nem	1100	1 000	0.01 U	0.000	0.00	9010	0.100	0.4811	0.52 UCD
909	0.00	0.000	0000	0.00	0.00	0511	0.45 U	0.49 U	0.48 U(D)	054 U(J)	0.40	100 100	1 1800	0.52 UU
e Guerra	0.51 U	0.49.0	0.43 U	0000	1000	1 8900	0.450	0.49 (0.48 U.D	0.54 U(3)	0.80	THE ICO		
	1 กระก	0.690	6700	2000	7						1 0000	111300	0.048 U	0.052 U(J)
				1 0311 1300	116300	1 1000	0.045 U	0.047 U	0.048 U(J)	0004000	Orașio	2100	11 2000	0.100
Aroctor 1016	D 15000	0.049 U(J)	0.043 U	CIA CON I		110	U 1900	0.0960	0.097 U(J)	0.1100	0.000	11.500	DOMESTI	0.052 UU
201	010	U10 0000	0.088.0	0.11.0	1,000	11300	0.04511	0.047 U	0048 U(J)	0.054 UU	0.000	0.000	0.04811	0.052.000
222	U 1900	13U 9400	0,043 U	0.0056 UCD		1000	10450	0.047 U	0048 0(0)	0.054 U(3	0.000	0.000	11800	0.052 UCD
242	0.081 ບ	0.049 U(J)	0.043 U	In con		1300	0.045 U	0.047 U	0.048.0(J)	00054 U(J)	0.000	11,500	0.08813	0.062 U(J)
248	0.000	0.049 ULU	0.043.0	ma senn	2000	1 2500	0.04519	0.047.0	0.048 U(J)	0.054 U(J)	BOAD	1,300	0.04811	0.052 UCA
25	0.051 U	0.049 U(J)	0.0430	CO COO		1000	0,045 U	0.047 U	0.048 U(J)	0004 UC)	D COUNTY	1 5900	0.048.0	0.052 U(I)
990	0.051 U	(J)U 9200	0.043 0	EU 5300	110500	0.051	0.045 U	0.047 U	0.048 U(J)	0000	n com	1 1900	0.048 U	0.052 UU
362	0.051 ป	0.049 U(J)	0.043.0	0.000,000	0.6800	n 50'0	0.045 U	0.047 U	0048 U(J)	T 100 P 200	0.000	**************************************		
Arocior 1268	0.051 U	0.049 U(J)	0.043 U	T Inhoomn	2000						1		n	
							-		-	_	-	•		
					=		-	•	,					

						Native Sediment	īcibie D-2 Analyticai Results (c	x 1996			A verse course	Daw woos	Chauman in	O-SMICERNS.
Somodo D:	Ct-\$0005-0010-0	CL-\$D009-0020-0	CI-SO013-0020-0	CL-SD013-00250	CL-\$0016-0010-0	Ct-80018-0020-0	CI-\$0018 CI-\$0019 CI-\$00	CL-50020-0025-0	C1-8002	CL-S0024	CJ -\$20028	CISD032 10/21/96	C1-50004 10/21/98	CL-50037
Station ID:	10/19/96	10/19/96	10/19/96	10/20/96	10/20/96	210.3	3 to 4	2.5 to 3.5	3 to 4	1.5102.5	3/04	3103.8	2103	3.5 to 4.5
Depth (feet)	1 102	2103	2104	- c'r 01 c'7										
Analyse (mg/kg)							200	0.00	0.01 U	0.01 U	0.010	0.00	00) U	Q 1000
VOC:	0.01 U	0.01 U	001 U	0.010	0.01	0 100	0.00	001 U	0.010	0.01 U	0010	0.000	N 100	0010
1.1.1.2-letrochorosimone	0.10.0	0.010	0 100	0.00	1000	0 10.0	0.100	0.01 U	0.01 U	0.01 U	0010	0.00	2010	0 100
1,1,22-Tetrochlorgethone	0.00	0.00	0.00	0010	0.01 0	0.00	0.010	0010	0.01 U	0010	0 10.0	0.010	0.100	O 100
1,1,2-Inchloroethoria	0.00	0.00	0.100	0,010	0.01 u	0.01 U	0.00	0.01	0.01 U	0.01 U	n 100	0.10.0	001 U	0.001 U
1, 1-Dichloroethene	0.01	0.01 U	0.00	0010	0 10.0	0 10:0	0.01 U	0.01 U	0.01 U	0010	0 100	0 100	0.010	0.01 0
1,1-Dichloroproperte	001 U	0.00	0 100	0.00 U	0.01 U	0 10:0	0.01.0	0010	0.010	0.01 U	0.01 u	0.01 U	กาธอ	0.010
123-Inchorporation	0.00	0.010	0.01 U	0.00	0010	0010	0.01 U	0.01 U	0.01 U	0.01 U	0.010	0 100	2010	0.001
1.2.4-Inchorobenzene	0.01 0	0.01 U	0.01 U	0000	0.01 U	0.01 บ	0.01 U	0,01 U	0.01 U	00100	00100	0.01 URI	0.01 UR3	RJU 1000
1,2,4-Irimethy/benzene	0.01 0	0.00	190 100 100 100	0.01 UR)	10:0 (SJU 10:0	001 UR	0.01 UR	000 100	0.000	0.010	0.01 ti	0.100	0.00	0.01 U
1,2-Dioromo-3-	00100	0.01 U	0.01 U	0.00	0.01 U	0.00	0010	0 (00)	0,01 บ	0.01 U	0.00	0.01 0	0010	a mino
12-Department and	0.00	0.01 U	0.01 U	0.010	0010	0.000	0.00	0.01 U	0.01 U	0.01 U	9010	0.010	0.80	0.000
1,2-Okchkoroethone	0.010	0.010	1000	0.10.0	0.0) u	. 0.01 A	0.01 U	0.00	0.010	0010	0.01 U	0.010	U 10.0	0.010
1,2-Dichloropropone	0 100	0010	0.01 U	0.01 U	0.01 U	0010	0.00	0010	0010	0.01 U	0.01 U	0.01 U	001 U	0.010
1 3-District Concerns	0.010	0.01 U	0.01 U	0010	0010	0 10.0	0.00	0.01 U	0.01 U	0.01 U	0010	0.010	0 100	0.00
1,3-Dictionopropone	0.01 U	0010	0010	0.010	0.01 U	0.01 U	0.01 U	0.00	0.000	0.01 U	U 10.0	0.01 U	ບ ເຄວ	0.00
1,4-Dictionoperage	0.01 U	0.01	บ เฮเจ	0010	0.01 U	0010	0.01 U	0.10.0	0.00 U	n 100	0.01 U	0.010	00.0	0.000
2-Chloroholuene	0.01 9	0.01	0.00	0010	0.010	0.00	0.00	0010	0.010	0.000	n 100	0.01 U	0.00	0.00
4-Chlorotoluene	0010	0.00	0.10.0	0.010	0.01 0	0.010	0 100	0,01 U	0.01 U	0.01 U	n 10°0	0,010	001 U	0.100
Bromobarzene	0.01 U	U 10.0	0.10.0	0010	00110	0.00	n 10'0	n t00	0.10.0	0010	0.100	0.000	0.01 u	o (60)
Bromochloromethone	0.01 U	0 100	0.01 U	0.010	0.00	0 I I I I	0.100	0 100	0.00	0.01 U	n 10'0	n 100	0 100	0.010
BOTTO CHARGING THE	U 10.0	n t0:0	0.01 U	0.01 U	0 100	0.010	0.010	0.0) U	0.01 U	0.01 U	0 100	2019	0010	Contro
Bromomethone	0.01 U	0.01 U	0.010	0.00	0 10.0	0.00	0.010	0.01 U	0.01 U	001 0	0.00	0.010	0.00	0.010
Corbon Tehrochloride	0010	0.01	n 10'0	0.10.0	0.01 U	0.01 U	0.01 V	0.00	0 100	0.010	0.01	0.01 U	0.100	0 1000
Chiorosthone	0.00	0.01 U	0.01 U	0.010	1 100	0.010	0.100	0.00	0.01 U	0.01 U	0.010	0010	0010	0.10.0
Chloroform	0010	0.01 U	00100	0 (0.0	0.10.0	0.01 U	0.01.0	001 U	0.010	0 100	0.01 U	0.01 U	0.00	A 10'0
Chloromethone	0000	0.01 U	0 to 0	n (0'0	0.01 U	0.01.0	0.00	0.01 U	0.01 U	0.10.0	0.01 U	0010	0010	0.000
Cts-1,3-Dichlomoropene	0 10:0	0.01 U	0.10	0.010	0.00	0,10,0	0.010	0.010	0.01 U	0.01 0	0010	0010	OU U	n tare
Distancessoromethone	0010	0.000	0.0) U	U 10.0	0.00	0.00	0010	0 100	0 10.0	0.01 U	U 10.0	0.01 U	0.00	0100
Dichlorodifuoromethone	0.01 U	0,00	0.01 U	0010	0 100	U 10.0	0.010	U 10.0	n 10'0	0 100	0010	0000	0.000	0.00 U
Ethylographe	0010	0.00	0.100	0.100	0.01 U	0.100	0.01 U	0010	0 100	0.01 U	U 10.0	0.01 U	0.010	0.00
booropyberzene	υ (0.0	0 10 0	0.01 U	0.00	0010	0.087 (LU)	ന്നു ബാ	0.051 (UJ)	0.044 U(J)	0.031 U(J)	0.052 U(1)	0000	0.100	0.01 U
Methylene Chicade	0.067 (9)	00100	0.010	0.01 U	0.00	0.010	0.010	0.00	0.000	0.01 U	0.01 U	0.00	0.01 U	0.01 U
N-Propylograpine	0.10	0.01 U	0.01 U	0.01 U	0.01 0	0 100	0.00	0.01 U	0.01 U	0.01 U	0.00	0010	0.00	0.010
P-koprocytoluene	0.01 U	0.01 0	0.100	0.100	0.010	0.01 U	0.01 U	001 0	0.100	0010	0.010	0.00	n 100	0.01 U
Sec-Burybenzene	0.010	0.01.0	U 10.0	0.01 U	0.01 U	0010	0010	0.01	0.01 U	0.01 U	0.01 U	0.01 U	00) U	0.00
Tert-Butylbenzene	0.01 U	i (0.0	0.010	0.01 0	0010	0.01 U	n 10'0	0,01 U	0.01 U	0.01 U	0010	0.00	0.00	0,01 U
Temochkyoemene	0.01 U	0.01 U	0 100	0 100	0.01 U	0.01 U	0.010	0010	0.01 U	0010	0010	0.010	n 100	0.010
Toluena	0010	0 100	0.00	0.01 U	0.01 U	0010	0.010	0010	0010	O 100	0.01 U	0.00 0	0.010	0.010
Irons-1,3-Okchioropropene	0.010	0.01 U	0.010	0.01 U	0.01	0.010	0.00	0.01 0	0.01 U	U (0.0	0.01 U	0.01 U	0010	0.000
Inchlorgethene	0,01 U	0.01 U	0010	0 10.0	0.01 U	0.010	n 10'0	0.01 U	0.03 U	0 100	0010	0,010	n 10:0	0.00
Vind Charte	0.00	0.00	บ เอด	0.01 0	n 100	0010	0000	0.01 0	0.01	0.01 U	0.01 U	0.100	0.00	0.00
Xvienes, Total	0.01 U	0.01 U	0.01 U	0.100	0.01.0									
Abbrevious and Symbols:														
R = result rejected owing to gross QA/AC outliers; presence or absence of material connot be certain	s QA/AC outliers; presen	ce or absence of mater	rial cannot be certain											
														-

		any Lake Analytic			
Sample ID: -	CL-SD038-0120-0	CL-SD038-0150-0	CL-SD039-0075-0	CL-SD039-0120-0	CL-SD040-0235-0
Station ID:	. CL-SD038	CL-SD038	CL-SD039	CL-SD039	CL-SD040
Date Sampled:	11/26/96	11/26/96	11/26/96	11/26/96	11/27/96
Depth (ft):	12-13	15-16	7.5-9	12-13	23.5-25
Description:	Potential Process		Potential Process		Potential Process
	Residue	Native Soil	Residue	Native Soil	Residue
inalyte (mg/kg)		r		1	7.11
Cyanide, Total	7.7	10	10	10	10
Fluoride By 340.1/.2	8200 (J)	27 <u>0</u> (J)	370 (J)	190 (J)	370 (J)
Fluoride By 300.0 Total Organic Carbon	360 D 41300	5 6070	21 12100	577	2.5 U 1500
otal Metals	41300	0070	12100	3//	1500
Aluminum	21500 J	6820 J	12000 J	5890 J	4810 J
Antimony	2.5 U	2.5 U	2,5 U	2.5 U	2.5 U
Arsenic	4.7	1.4	3.8	1.2	0.58
Barium	116	28.6	85.4	26.6	33.4
Beryllium	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cadmium	0.5	0.5 U	0.5 U	0.5 U	0.5 V
Calcium	11100	3340	4380	3100	2510
Chromium	49.8	10.3	16	12	8,32
Cobalt	12.6	4.19	7,49	4.24	3.56
Copper	66.3	11.9	22.9	11.7	9.13
Iron	18700 J	10600 J	16700 J	11100 J	8370 J
Lead	21.4	5 U	14,2	5 U	5 U
Magnesium	3760	1440	3060	1310	1390
Manganese	194	97	232	91.1	73.6
Mercury	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel	173	7.78	39	11.8	6,69
Potassium	1390	278	986	222	271
Selenium	1 U	ΙU	1 U	1 U	1 U
Silver	10	1 U	10	10	1 ប
Sodium	1630	719	685	613	454
Thallium	10	1 U	1 U	10	10
Vanadium	114	38.7	50.8	45	29.5
Zinc	90.3	24.4	76.7	22.5	24.5
AHs	0.5011				0.40.11
2-Methylnaphthalene	0.52 U 0.52 U	0.52 U	0.43 U 0.43 U	0,43 U 0,43 U	0.43 U 0.43 U
Acenaphthene	0.52 U	0.52 U 0.52 U	0,43 U	0.43 U	0.43 U
Acenaphthylene Anthracene	0.52 U	0.52 U	0.43 U	0.43 U	0,43 U
Benzo(a)anthracene	0.78	0.52 ป 0.52 ป	0.43 U	0,43 U	0,43 U
Benzo(a)pyrene	0.43 J	0.52 U	0.43 U	0.43 U	0.43 U
Benzo(b)fluoranthene	0.40 0	0.52 U	0.43 U	0.43 U	0.43 U
Benzo(g,h,i)perylene	0.32 J	0.52 U	0.43 U	0.43 U	0.43 U
Benzo(k)fluoranthene	0.41 J	0.52 U	0.43 U	0.43 U	0.43 U
Chrysene	2.1	0.52 U	0.43 U	0.43 U	0.43 U
Dibenzo(a.h)anthracene	0,52 U	0.52 U	0.43 U	0.43 U	0,43 U
Fluoranthene	1.8	0.52 U	0.43 U	0.43 U	0,43 U
Fluorene	0.52 U	0.52 U	0.43 U	0,43 U	0,43 U
Indeno(1,2,3-cd)pyrene	0.52 U	0.52 U	0.43 U	0.43 U	0.43 U
Naphthalene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Phenanthrene	0.21 J	0.52 U	0.43 U	0.43 U	0.43 U
	0.94	0.52 U	0.43 U	0,43 U	0,43 U
Pyrene			U	U	U
TPAH	7.59	U			
TPAH CBs					
TPAH CBs Aroclor 1016	0.052 U	0.052 U	0.043 U	0,043 U	0.043 U
TPAH PCBs Aroclor 1016 Aroclor 1221	0.052 U 0.1 U	0.052 U 0.1 U	0.043 U 0.088 U	0,043 U 0,088 U	
TPAH CBs Aroclor 1016	0.052 U 0.1 U 0.052 U	0.052 U			0.088 U
TPAH PCBs Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	0.052 U 0.1 U 0.052 U 0.052 U	0.052 U 0.1 U	0.088 U	0.088 U 0.043 U 0.043 U	0.043 U 0.088 U 0.043 U 0.043 U
TPAH PCBs Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	0.052 U 0.1 U 0.052 U 0.052 U 0.052 U	0.052 U 0.1 U 0.052 U	0.088 U 0.043 U	0.088 U 0.043 U	0.088 U 0.043 U 0.043 U
TPAH **CBs** Arcclor 1016 Arcclor 1221 Arcclor 1232 Arcclor 1242 Arcclor 1248 Arcclor 1254	0.052 U 0.1 U 0.052 U 0.052 U 0.052 U 0.052 U	0.052 U 0.1 U 0.052 U 0.052 U 0.052 U 0.052 U	0.088 U 0.043 U 0.043 U	0.088 U 0.043 U 0.043 U	0.088 U . 0.043 U
TPAH PCBs Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	0.052 U 0.1 U 0.052 U 0.052 U 0.052 U	0.052 U 0.1 U 0.052 U 0.052 U 0.052 U	0.088 U 0.043 U 0.043 U 0.043 U	0.088 U 0.043 U 0.043 U 0.043 U	0.088 U 0.043 U 0.043 U 0.043 U

Table D-3 West Company Lake Analytical Results for Soil								
Sample ID:		CL-SD038-0150-0	CL-SD039-0075-0	OL 20030 0300 0	O1 50040 4025 0			
Station ID:	CL-SD038-0120-0	CL-SD038-0150-0	CL-SD039-0075-0 CL-SD039	CL-SD039-0120-0 CL-SD039	CL-SD040-0235-0 CL-SD040			
Date Sampled:	CL-SD038 11/26/96	11/26/96	11/26/96	11/26/96	11/27/96			
Depth (ft):	12-13	15-16	7.5-9	12-13	23.5-25			
Description:	Potential Process	10-10	Potential Process	- 12-10	Potential Process			
	Residue	Native Soil	Residue	Native Soil	Residue			
Analyte (mg/kg)								
TPH								
TPH (HCID)	U	U I	U	<u> </u>	U			
VOCs								
1,1,1,2-Tetrachloroethane	0.02 U	0,02 U	0.02 U	0.02 U	0.02 U			
1,1,1-Trichloroethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U			
1,1-Dichloroethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,1-Dichloroethene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,1-Dichloropropene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,2,3-Trichlorobenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,2,3-Trichloropropane	0.02 Ú	0.02 U	0.02 U	0.02 U	0.02 U			
1,2,4-Trichlorobenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1.2.4-Trimethylbenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,2-Dibromo-3-Chloropropane	0.02 U(R)	0.02 U(R)	0.02 U(R)	0.02 U(R)	0.02 U(R)			
1,2-Dibromoethane	0.02 U	0.02 U	0.02 U	0.02 ป	0.02 U			
1,2-Dichlorobenzene	0.02 ป	0.02 ป	0.02 บ	0.02 ป	0.02 U			
1,2-Dichloroethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,2-Dichloropropane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,3,5-Trimethylbenzene	0,02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,3-Dichlorobenzene	0.02 U	0.02 U	0.02 U	0.02 U	0. 0 2 U			
1,3-Dichloropropane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
1,4-Dichlorobenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
2,2-Dichloropropane 2-Chlorotoluene	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U			
4-Chlorofoluene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Benzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Bromobenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Bromochloromethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Bromodichloromethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Bromoform	. 0.02 U	0.02 U	. 0.02 U	0.02 U	0.02 ป			
Bromomethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Carbon Tetrachlorlde	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Chlorobenzene	0.02 U	0.02 ป	0.02 U	0.02 U	0.02 U			
Chloroethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Chloroform	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Chloromethane_	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Cls-1,2-Dichlorotethene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Cis-1,3-Dichioropropene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Dibromochloromethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Dibromomethane Dichlorodifluoromethane	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U			
Ethylbenzene	0.02 U	0.02 U	0.02 U	. 0.02 U	0.02 U			
Hexachlorobutadlene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Isopropyfipenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Methylene Chloride	0.02 U	0.022 U	0.02 U	0.02 U	0.02 U			
N-Butylbenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
N-Propylbenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
P-Isopropyltaluene	0.02 U	0.02 U	0.02 U	0.02 U	0,02 U			
Sec-Butylbenzene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Styrene	0.02 U	0.02 U	0,02 U	0,02 U	0.02 U			
Tert-Butylbenzene	0.02 U *	0.02 U	0.02 U	0.02 U	0.02 U			
Tetrachloroethene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Toluene	0.02 U	0.02 U	0.02 U	0.02 U	0,02 U			
Trans-1,2-Dichlorotethene	0.02 U	0.02 U	0.02 ป	0.02 U	0.02 U			
Trans-1,3-Dichloropropene	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U			
Trichloroethene	0.02 U	0.02 U	0,02 U	0.02 U	0.02 U			

		Table D-3			
	West Comp	any Lake Analytic	al Results for Soil		
Sample ID:	CL-SD038-0120-0	CL-SD038-0150-0	CL-SD039-0075-0	CL-SD039-0120-0	CL-SD040-0235-0
Station ID:	CL-SD038	CL-SD038	CL-SD039	CL-SD039	CL-SD040
Date Sampled:	11/26/96	11/26/96	11/26/96	11/26/96	11/27/96
Depth (ft):	12-13	15-16	7.5-9	12-13	23.5-25
Description:	Potential Process		Potential Process		Potential Process
	Residue	Native Soil	Residue	Native Soil	Residue
Analyte (mg/kg)					
VOCs (cont'd)					
Trichlorofluoromethane	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Vinyl Chloride	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Xylenes, Total	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U

- Aylettes, folding and Symbols:

 D = compound run at a dilution to bring the concentration of that compound within the linear range of the instrument
 J = estimated value

 P = greater than 25% difference for detected concentrations between the two methods used for analysis

 R = result rejected owing to gross QA/QC outliers; presence or absence of material cannot be certain

 U = undetected

 () = advisory flag based on professional judgment rather than method protocol